This volume offers a unique collection of outstanding contributions from renowned women mathematicians who met in Cambridge for a conference under the auspices of European Women in Mathematics (EWM). These contributions serve as excellent surveys of their subject areas, including symplectic topology, combinatorics and number theory. The volume moreover sheds light on prominent women mathematicians who worked in Cambridge in the late 19th and early 20th centuries by providing an insightful historical introduction at the beginning of the volume. The volume concludes with short contributions from women mathematicians from across Europe working in various areas of mathematics ranging from group theory to magnetic fields.
Author(s): Catherine Hobbs, Sylvie Paycha
Year: 2010
Language: English
Pages: 199
Tags: Математика;История математики;
CONTENTS......Page 10
Preface......Page 6
Organizing Committees......Page 8
Part A Invited Talks......Page 12
1. Quantization......Page 14
2. Basic definitions......Page 16
3. Symplectic case: star products and symplectic connections......Page 19
3.1. Fedosov’s construction......Page 22
4.1. Star products on Poisson manifolds and formality......Page 26
4.2. Kontsevich’s formality for Rd......Page 33
4.3. Universal star product and universal formality......Page 37
Universal star product......Page 39
Universal formality......Page 40
References......Page 42
1. First notions......Page 44
2. Symplectomorphisms......Page 48
3. Almost complex structures and J-holomorphic curves......Page 54
3.1. Sketch proof of the nonsqueezing theorem......Page 61
References......Page 63
1.1. Permutation groups and regularity......Page 66
1.2. Cayley graphs......Page 67
2. A recognition problem for Cayley graphs......Page 69
3. Cayley graphs and B-groups......Page 72
4. A fascinating density result......Page 73
5. Exact factorisations of groups......Page 74
6. Primitive Cayley graphs for various groups G......Page 75
7. Types of finite primitive groups......Page 77
8. Exact factorisations of finite classical groups......Page 78
References......Page 79
1. Introduction......Page 82
2. Elliptic curves and number theory......Page 83
3. Iwasawa theory......Page 86
4. Iwasawa algebras......Page 88
5. Main conjectures......Page 91
6. Applications and examples......Page 95
References......Page 98
Part B Contributed Short Talks......Page 102
1. Introduction......Page 104
2. Landau theory......Page 105
3. Experimental evidence for iron......Page 109
4. Conclusions......Page 111
References......Page 112
1. Introduction......Page 114
2. Formulation of the problem......Page 115
3. Method of solution......Page 116
4. Results and discussion......Page 119
References......Page 122
1. Introduction......Page 124
2. Expansions and fundamental intervals......Page 126
3. Two rows of rectangles......Page 128
4. Towering the orbits......Page 132
References......Page 133
1. Introduction......Page 136
2. Prerequisites......Page 137
3. The equivariant Tietze extension theorem......Page 138
References......Page 140
Notation and Introduction......Page 142
1. Uniform and tangential approximation by holomorphic functions......Page 143
2.1. Uniform approximation by lacunary polynomials......Page 145
2.2. Auxiliary Proposition......Page 146
2.3. The main result......Page 150
References......Page 153
1. Space-time coding: Idea and design criteria......Page 154
2. Cyclic division algebras and orders......Page 157
3. The discriminant bound......Page 160
References......Page 163
Part C Women in Mathematics......Page 164
And What Became of the Women? C. Series......Page 166
At Cambridge......Page 167
What did these three women do afterwards?......Page 171
References......Page 173
Dame Mary Cartwright, F.R.S.......Page 176
Bertha Swirles, Lady Je reys......Page 179
Olga Taussky-Todd......Page 181
Conclusion......Page 184
References......Page 185
Introduction......Page 186
Women in DAMTP report......Page 187
Women and the Mathematical Tripos: Myth and Reality; the Salter Report......Page 190
Indicators of Academic Performance......Page 192
Conclusions......Page 197
References......Page 199
1. Introduction......Page 200
2. Studying math at German universities - the current situation......Page 201
3.1. Mathematics as a profession......Page 202
3.2. Interviews with mathematicians......Page 204
3.3. History and philosophy of mathematics......Page 205
3.4. Gender meets Mathematics......Page 206
3.5. The scientific community in mathematics......Page 207
3.6. What is mathematics?......Page 208
References......Page 209