The editors of this volume bring to life a major part of Ettore Majorana s work that up to now was not accessible to the general audience. These are the contents of the Quaderni (notebooks) of Ettore Majorana, edited and translated in English.
Ettore Majorana had an astounding talent for Physics that made an impression on all the colleagues who had the opportunity to know him. Enrico Fermi, who took him in his group when he was a student, ranked him with Galilei and Newton. Ettore Majorana s career was cut short in 1938, as he mysteriously disappeared at the age of 32, leaving many unpublished works.
This book reveals an interesting perspective over the points of view, the interests, the approach to physical problems of this great physicist and it shows that he had advanced his comprehension of physics to levels that were only reached by other physicists ten years after, or even later. The editors have inserted minimal text, in order to leave the original calculations by Majorana intact, and at the same time help the reader when the formalism had been left unexplained. The preface to this book provides fascinating reflections on the life and pioneering work of this exceptional physicist, placing it in the context of the physical discoveries of the following years. This book will have considerable interests to all those interested in the development of the history of Physics.
Author(s): Salvatore Esposito, Salvatore Esposito, E. Recami, Alwyn van der Merwe, Roberto Battiston
Series: Fundamental Theories of Physics
Edition: 1
Publisher: Springer
Year: 2008
Language: English
Pages: 496
cover-large.TIF......Page 1
front-matter.pdf......Page 2
ESPOSITOSTOC2.pdf......Page 0
-Preface......Page 13
-Bibliography......Page 37
Table of contents of the complete set of Majorana's Quaderni (ca. 1927-1933)......Page 42
front-matter_001.pdf......Page 56
Vibrating string [Q02p038]......Page 57
Relativistic dynamics......Page 58
Field equations......Page 61
Quantization of the Dirac field [Q01p133]......Page 76
Dirac equation......Page 79
Maxwell equations......Page 81
Maxwell-Dirac theory......Page 83
Preliminaries for a Dirac equation in real terms [Q13p003]......Page 89
First formalism......Page 90
Second formalism......Page 92
Angular momentum......Page 94
Plane-wave expansion......Page 98
Interaction with an electromagnetic field......Page 99
Spin-1/2 particles (4-component spinors)......Page 101
Spin-1 particles (6-component spinors)......Page 102
5-component spinors......Page 109
Basic lagrangian and hamiltonian formalism for the electromagnetic field [Q01p066]......Page 111
Analogy between the electromagnetic field and the Dirac field [Q02a101]......Page 113
Electromagnetic field: plane wave operators [Q01p068]......Page 118
Dirac formalism......Page 122
Quantization of the electromagnetic field [Q03p061]......Page 125
Continuation I: angular momentum [Q03p155]......Page 132
Continuation II: including the matter fields [Q03p067]......Page 136
Quantum dynamics of electrons interacting with an electromagnetic field [Q02p102]......Page 138
Continuation [Q02p037]......Page 148
Quantized radiation field [Q17p129b]......Page 149
Wave equation of light quanta [Q17p142]......Page 154
Continuation [Q17p151]......Page 155
Free electron scattering [Q17p133]......Page 158
Bound electron scattering [Q17p142]......Page 166
Retarded fields [Q05p065]......Page 170
Time delay......Page 172
Magnetic charges [Q03p163]......Page 173
Appendix: Potential experienced by an electric charge [Q02p101]......Page 175
front-matter_002.pdf......Page 177
Perturbation method......Page 178
Variational method......Page 181
Wavefunctions of a two-electron atom [Q17p152]......Page 186
Continuation: wavefunctions for the helium atom [Q05p156]......Page 189
Self-consistent field in two-electron atoms [Q16p100]......Page 194
Energy levels for two-electron atoms [Q07p004]......Page 197
Preliminaries for the X and Y terms......Page 201
Simple terms......Page 204
Electrostatic energy of the 2s 2p term......Page 208
Perturbation theory for s terms......Page 210
2s2p 3P term......Page 211
X term......Page 212
2s2s 1S and 2p2p 1S terms......Page 222
1s1s term......Page 223
1s2s term......Page 227
Continuation......Page 228
Other terms......Page 229
Ground state of three-electron atoms [Q16p157a]......Page 236
Electrostatic potential......Page 237
Ground state......Page 238
Asymptotic behavior for the s terms in alkali [Q16p158]......Page 243
First method......Page 244
Second method......Page 248
Atomic eigenfunctions I [Q02p130]......Page 250
Atomic eigenfunctions II [Q17p161]......Page 254
Atomic energy tables [Q06p026]......Page 257
Polarization forces in alkalies [Q16p049]......Page 258
Complex spectra and hyperfine structures [Q05p051]......Page 264
Calculations about complex spectra [Q05p131]......Page 272
Resonance between a p (=1) electron and an electron with azimuthal quantum number ' [Q07p117]......Page 276
Resonance between a d electron and a p shell I......Page 277
Eigenfunctions of d52, d32, p32 and p12 electrons......Page 278
Resonance between a d electron and a p shell II......Page 280
Magnetic moment and diamagnetic susceptibility for a one-electron atom (relativistic calculation) [Q17p036]......Page 282
Spin-orbit couplings and energy levels......Page 286
Spectral lines for Mg and Zn......Page 290
Spectral lines for Zn, Cd and Hg......Page 291
Hyperfine structure: relativistic Rydberg corrections [Q04p143]......Page 292
Non-relativistic approximation of Dirac equation for a two-particle system [Q04p149]......Page 295
Non-relativistic decomposition......Page 296
Electromagnetic interaction between two charged particles......Page 297
Radial equations......Page 298
Hyperfine structures and magnetic moments: formulae and tables [Q04p165]......Page 299
First method......Page 304
Second method......Page 307
The equation for -electrons in elliptic coordinates......Page 313
Evaluation of P2 for s-electrons: relation between W and......Page 315
Vibration modes in molecules [Q06p031]......Page 327
The acetylene molecule......Page 330
Reduction of a three-fermion to a two-particle system [Q03p176]......Page 334
Degenerate gas [Q17p097]......Page 338
Pauli paramagnetism [Q18p157]......Page 339
Ferromagnetism [Q08p014]......Page 340
Ferromagnetism: applications [Q08p046]......Page 351
Again on ferromagnetism [Q06p008]......Page 358
front-matter_003.pdf......Page 359
Scattering from a potential well [Q06p015]......Page 360
Simple perturbation method [Q06p024]......Page 365
The Dirac method [Q01p106]......Page 366
Coulomb field......Page 367
The Born method [Q01p109]......Page 368
Coulomb scattering [Q01p010]......Page 370
Quasi coulombian scattering of particles [Q01p001]......Page 373
Method of the particular solutions......Page 376
Coulomb scattering: another regularization method [Q01p008]......Page 377
Two-electron scattering [Q03p029]......Page 379
Compton effect [Q03p041]......Page 380
Quasi-stationary states [Q03p103]......Page 381
Appendix: Transforming a differential equation [Q03p035]......Page 386
Radioactivity [Q17p005]......Page 387
Mean nucleon potential......Page 388
Computation of the interaction potential between nucleons......Page 390
Nucleon density......Page 393
Nucleon interaction I......Page 395
Nucleon interaction II......Page 400
Simple nuclei I......Page 411
Simple nuclei II......Page 413
Thomson formula for particles in a medium [Q16p083]......Page 416
Scalar field theory for nuclei? [Q02p086]......Page 418
front-matter_004.pdf......Page 430
Surface waves in a liquid [Q12p054]......Page 431
Thomson's method for the determination of e/m [Q09p044[......Page 433
Wien's method for the determination of e/m (positive charges) [Q09p048b]......Page 434
Townsend effect......Page 436
Zaliny's method for the ratio of the mobility coefficients......Page 440
Thomson's method......Page 441
Millikan's method......Page 442
Thermionic effect [Q09p053]......Page 443
Langmuir Experiment on the effect of the electron cloud......Page 445
Linear partial differential equations. Complete systems [Q11p087]......Page 448
Linear operators......Page 449
Integrals of an ordinary differential system and the partial differential equation which determines them......Page 450
Integrals of a total differential system and the associated system of partial differential equation that determines them......Page 451
Intrinsic equations of parallelism......Page 454
Christoffel's symbols......Page 456
Equations of parallelism in terms of covariant components......Page 457
Some analytical verifications......Page 458
Line elements......Page 459
Euclidean manifolds. any Vn can always be considered as immersed in a Euclidean space......Page 460
Angular metric......Page 461
Coordinate lines......Page 462
Differential equations of geodesics......Page 463
Application......Page 465
Vector displacement......Page 467
Associated vectors......Page 469
Geodesic coordinates......Page 470
Particular cases......Page 474
Applications......Page 475
Divergence of a vector......Page 476
Divergence of a double (contravariant) tensor......Page 477
Some laws of transformation......Page 478
systems......Page 479
Extension of a field......Page 480
Sections of a manifold. Geodesic manifolds......Page 481
Geodesic coordinates along a given line......Page 482
Cyclic displacement round an elementary parallelogram......Page 486
Fundamental properties of Riemann's symbols of the second kind......Page 488
Fundamental properties and number of Riemann's symbols of the first kind......Page 489
Tangent geodesic coordinates around the point P0......Page 492
-Index......Page 494