Estimation of Statistical Models in R

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Institute of Transportation Engineers – 2010, 145 pages
The R statistical package can best be thought of, in terms of user interface, as falling some-where in-between SAS and Limdep. Like SAS, R accomplishes different tasks using different procedures. Instead of the procedures being self-contained (like PROC REG in SAS), commands are issued one at a time, like Limdep. However, unlike SAS and Limdep, R can easily be extended using user-generated add-on packages, or libraries. Because R is open-source (and thus free), it is relatively easy to create add-on packages and quickly distribute them to a large, well-established community of users. Because of this, R can perform procedures and estimate statistical models that have not yet been implemented in purchaseable software such as SAS, Limdep, SPSS, and Stata. One primary example is spatial econometrics; while Stata contains capabilities for estimating certain types of spatial econometric models, the ma- jority of the most recent types of models (spatial panel models, spatial Probit, etc.) are only available in R. In short, R can give users access to cutting-edge methods and models easily.
The available packages from the central R website, the Comprehensive R Archive Network (CRAN, http://cran.r-project.org), can accomplish s variety of tasks, such as statistical analysis (which is to be expected from a statistical software package), machine learning, importing and manipulating GIS data (R's GIS capabilities are far stronger than SAS), parallel computing, qualitative research analysis, text mining, graph/network analysis, optimization, solving ordinary differential equations, image analysis, 3D graphics (through OpenGL), interactive graphics, and Bayesian inference. R can interface with a large number of other programs and platforms, such as Excel (through an add-in accessible through Excel), Google Maps, C++, WinBUGS, gretl, SAS, and even audio devices, relational databases (such as Oracle and SQL), the US Census database, LP_SOLVE, openNLP, PowerPoint, Word, LaTeX, the Web (through CURL), CPLEX, and Java. Despite this wide array of abilities, it is relatively easy to use a single data set with a wide variety of varieties, as will be demonstrated here.
One important noteunlike SAS, all commands in R are case-sensitive. While package names and commands in the text of the handout are denoted using all caps, the exact capitali-zations should be used as shown in the syntax examples.

Author(s): Mills J.

Language: English
Commentary: 860771
Tags: Библиотека;Компьютерная литература;R