This updated second edition covers mole balances, conversion and reactor sizing, rate laws and stoichiometry, isothermal reactor design, rate data collection/analysis, multiple reactions, reaction mechanisms, pathways, bioreactions and bioreactors, catalysis, catalytic reactors, nonisothermal reactor designs, and more. Its multiple improvements include a new discussion of activation energy, molecular simulation, and stochastic modeling, and a significantly revamped chapter on heat effects in chemical reactors.
Author(s): H. Scott Fogler
Edition: 2
Publisher: Prentice Hall
Year: 2018
Language: English
Pages: 810
Tags: chemical engineering
Cover......Page 1
Title Page......Page 4
Copyright Page......Page 5
CONTENTS......Page 8
PREFACE......Page 16
ABOUT THE AUTHOR......Page 32
CHAPTER 1 MOLE BALANCES......Page 34
1.1 The Rate of Reaction, –r[sub(A)]......Page 37
1.2 The General Mole Balance Equation......Page 41
1.3 Batch Reactors (BRs)......Page 43
1.4.1 Continuous-Stirred Tank Reactor (CSTR)......Page 45
1.4.2 Tubular Reactor......Page 47
1.4.3 Packed-Bed Reactor (PBR)......Page 51
1.5 Industrial Reactors......Page 56
CHAPTER 2 CONVERSION AND REACTOR SIZING......Page 66
2.2 Batch Reactor Design Equations......Page 67
2.3 Design Equations for Flow Reactors......Page 70
2.3.2 Tubular Flow Reactor (PFR)......Page 71
2.3.3 Packed-Bed Reactor (PBR)......Page 72
2.4 Sizing Continuous-Flow Reactors......Page 73
2.5 Reactors in Series......Page 82
2.5.1 CSTRs in Series......Page 83
2.5.2 PFRs in Series......Page 87
2.5.3 Combinations of CSTRs and PFRs in Series......Page 88
2.5.4 Comparing the CSTR and PFR Reactor Volumes and Reactor Sequencing......Page 92
2.6.1 Space Time......Page 93
2.6.2 Space Velocity......Page 95
CHAPTER 3 RATE LAWS......Page 104
3.1 Basic Definitions......Page 105
3.1.1 Relative Rates of Reaction......Page 106
3.2 The Rate Law......Page 107
3.2.1 Power Law Models and Elementary Rate Laws......Page 108
3.2.2 Nonelementary Rate Laws......Page 111
3.2.3 Reversible Reactions......Page 115
3.3.1 The Rate Constant kand Its Temperature Dependence......Page 118
3.3.2 Interpretation of the Activation Energy......Page 119
3.3.3 The Arrhenius Plot......Page 125
3.4.1 Historical Perspective......Page 128
3.4.2 Stochastic Modeling of Reactions......Page 129
3.5 Present Status of Our Approach to Reactor Sizing and Design......Page 132
CHAPTER 4 STOICHIOMETRY......Page 144
4.1 Batch Systems......Page 146
4.1.1 Batch Concentrations for the Generic Reaction, Equation (2-2)......Page 148
4.2 Flow Systems......Page 152
4.2.2 Liquid-Phase Concentrations......Page 153
4.2.3 Gas-Phase Concentrations......Page 154
4.3 Reversible Reactions and Equilibrium Conversion......Page 165
CHAPTER 5 ISOTHERMAL REACTOR DESIGN: CONVERSION......Page 180
5.1 Design Structure for Isothermal Reactors......Page 181
5.2 Batch Reactors (BRs)......Page 185
5.2.1 Batch Reaction Times......Page 186
5.3.1 A Single CSTR......Page 193
5.3.2 CSTRs in Series......Page 196
5.4 Tubular Reactors......Page 203
5.4.1 Liquid-Phase Reactions in a PFR υ=υ[sub(0)]......Page 204
5.4.3 Effect of ε on Conversion......Page 205
5.5.1 Pressure Drop and the Rate Law......Page 210
5.5.2 Flow Through a Packed Bed......Page 211
5.5.3 Pressure Drop in Pipes......Page 215
5.5.4 Analytical Solution for Reaction with Pressure Drop......Page 218
5.5.5 Robert the Worrier Wonders: What If…......Page 222
5.6 Synthesizing the Design of a Chemical Plant......Page 232
CHAPTER 6 ISOTHERMAL REACTOR DESIGN: MOLES AND MOLAR FLOW RATES......Page 250
6.2.1 Liquid Phase......Page 251
6.2.2 Gas Phase......Page 253
6.3 Application of the PFR Molar Flow Rate Algorithm to a Microreactor......Page 255
6.4 Membrane Reactors......Page 260
6.5 Unsteady-State Operation of Stirred Reactors......Page 269
6.6.2 Semibatch Reactor Mole Balances......Page 270
6.6.3 Equilibrium Conversion......Page 276
CHAPTER 7 COLLECTION AND ANALYSIS OF RATE DATA......Page 288
7.1 The Algorithm for Data Analysis......Page 289
7.2 Determining the Reaction Order for Each of Two Reactants Using the Method of Excess......Page 291
7.3 Integral Method......Page 292
7.4 Differential Method of Analysis......Page 296
7.4.2 Numerical Method......Page 297
7.4.3 Finding the Rate-Law Parameters......Page 298
7.5 Nonlinear Regression......Page 304
7.5.1 Concentration–Time Data......Page 306
7.6 Reaction-Rate Data from Differential Reactors......Page 309
7.7 Experimental Planning......Page 316
CHAPTER 8 MULTIPLE REACTIONS......Page 326
8.1.1 Types of Reactions......Page 327
8.1.2 Selectivity......Page 328
8.1.4 Conversion......Page 329
8.2 Algorithm for Multiple Reactions......Page 330
8.2.1 Modifications to the Chapter 6 CRE Algorithm for Multiple Reactions......Page 331
8.3.2 Maximizing the Desired Product for One Reactant......Page 333
8.3.3 Reactor Selection and Operating Conditions......Page 339
8.4 Reactions in Series......Page 342
8.5.1 Complex Gas-Phase Reactions in a PBR......Page 352
8.5.2 Complex Liquid-Phase Reactions in a CSTR......Page 356
8.5.3 Complex Liquid-Phase Reactions in a Semibatch Reactor......Page 358
8.6 Membrane Reactors to Improve Selectivity in Multiple Reactions......Page 360
8.8 The Fun Part......Page 365
CHAPTER 9 REACTION MECHANISMS, PATHWAYS, BIOREACTIONS, AND BIOREACTORS......Page 382
9.1 Active Intermediates and Nonelementary Rate Laws......Page 383
9.1.1 Pseudo-Steady-State Hypothesis (PSSH)......Page 384
9.1.2 If Two Molecules Must Collide, How Can the Rate Law Be First Order?......Page 387
9.1.3 Searching for a Mechanism......Page 388
9.2 Enzymatic Reaction Fundamentals......Page 392
9.2.1 Enzyme–Substrate Complex......Page 393
9.2.2 Mechanisms......Page 394
9.2.3 Michaelis–Menten Equation......Page 397
9.2.4 Batch-Reactor Calculations for Enzyme Reactions......Page 403
9.3 Inhibition of Enzyme Reactions......Page 405
9.3.1 Competitive Inhibition......Page 406
9.3.2 Uncompetitive Inhibition......Page 409
9.3.3 Noncompetitive Inhibition (Mixed Inhibition)......Page 410
9.3.4 Substrate Inhibition......Page 412
9.4 Bioreactors and Biosynthesis......Page 413
9.4.1 Cell Growth......Page 416
9.4.2 Rate Laws......Page 418
9.4.3 Stoichiometry......Page 421
9.4.4 Mass Balances......Page 427
9.4.5 Chemostats......Page 431
9.4.6 CSTR Bioreactor Operation......Page 432
9.4.7 Wash-Out......Page 433
10.1 Catalysts......Page 452
10.1.1 Definitions......Page 453
10.1.2 Catalyst Properties......Page 454
10.1.3 Catalytic Gas-Solid Interactions......Page 456
10.1.4 Classification of Catalysts......Page 457
10.2 Steps in a Catalytic Reaction......Page 458
10.2.1 Mass Transfer Step 1: Diffusion from the Bulk to the External Surface of the Catalyst—An Overview......Page 461
10.2.2 Mass Transfer Step 2: Internal Diffusion—An Overview......Page 462
10.2.3 Adsorption Isotherms......Page 463
10.2.4 Surface Reaction......Page 469
10.2.5 Desorption......Page 471
10.2.6 The Rate-Limiting Step......Page 472
10.3 Synthesizing a Rate Law, Mechanism, and Rate-Limiting Step......Page 474
10.3.1 Is the Adsorption of Cumene Rate-Limiting?......Page 477
10.3.2 Is the Surface Reaction Rate-Limiting?......Page 480
10.3.3 Is the Desorption of Benzene Rate-Limiting?......Page 482
10.3.4 Summary of the Cumene Decomposition......Page 483
10.3.5 Reforming Catalysts......Page 485
10.3.7 Temperature Dependence of the Rate Law......Page 489
10.4.1 Deducing a Rate Law from the Experimental Data......Page 490
10.4.2 Finding a Mechanism Consistent with Experimental Observations......Page 492
10.4.3 Evaluation of the Rate-Law Parameters......Page 494
10.4.4 Reactor Design......Page 496
10.5.1 Overview......Page 500
10.5.2 Chemical Vapor Deposition......Page 502
10.6 Model Discrimination......Page 505
10.7 Catalyst Deactivation......Page 508
10.7.1 Types of Catalyst Deactivation......Page 510
10.8 Reactors That Can Be Used to Help Offset Catalyst Decay......Page 518
10.8.1 Temperature–Time Trajectories......Page 519
10.8.2 Moving-Bed Reactors......Page 521
10.8.3 Straight-Through Transport Reactors (STTR)......Page 525
CHAPTER 11 NONISOTHERMAL REACTOR DESIGN–THE STEADY-STATE ENERGY BALANCE AND ADIABATIC PFR APPLICATIONS......Page 548
11.1 Rationale......Page 549
11.2.1 First Law of Thermodynamics......Page 550
11.2.2 Evaluating the Work Term......Page 551
11.2.3 Overview of Energy Balances......Page 553
11.3.1 Dissecting the Steady-State Molar Flow Rates to Obtain the Heat of Reaction......Page 558
11.3.2 Dissecting the Enthalpies......Page 560
11.3.3 Relating ΔH[sub(Rx)] (T),ΔH°[sub(Rx)] (T ), and ΔC[sub(p)]......Page 561
11.4.1 Adiabatic Energy Balance......Page 564
11.4.2 Adiabatic Tubular Reactor......Page 565
11.5.1 Equilibrium Conversion......Page 574
11.6.1 Exothermic Reactions......Page 579
11.6.2 Endothermic Reactions......Page 580
11.7 Optimum Feed Temperature......Page 583
CHAPTER 12 STEADY-STATE NONISOTHERMAL REACTOR DESIGN—FLOW REACTORS WITH HEAT EXCHANGE......Page 598
12.1.1 Deriving the Energy Balance for a PFR......Page 599
12.1.2 Applying the Algorithm to Flow Reactors with Heat Exchange......Page 601
12.2.1 Co-current Flow......Page 602
12.2.2 Countercurrent Flow......Page 604
12.3 Algorithm for PFR/PBR Design with Heat Effects......Page 605
12.3.1 Applying the Algorithm to an Exothermic Reaction......Page 609
12.3.2 Applying the Algorithm to an Endothermic Reaction......Page 616
12.4.1 Heat Added to the Reactor, Q......Page 625
12.5 Multiple Steady States (MSS)......Page 635
12.5.1 Heat-Removed Term, R(T )......Page 636
12.5.2 Heat-Generated Term, G(T )......Page 637
12.5.3 Ignition-Extinction Curve......Page 639
12.6.1 Energy Balance for Multiple Reactions in Plug-Flow Reactors......Page 642
12.6.2 Parallel Reactions in a PFR......Page 643
12.6.3 Energy Balance for Multiple Reactions in a CSTR......Page 646
12.6.4 Series Reactions in a CSTR......Page 647
12.6.5 Complex Reactions in a PFR......Page 650
12.7 Radial and Axial Variations in a Tubular Reactor......Page 657
12.7.1 Molar Flux......Page 658
12.7.2 Energy Flux......Page 659
12.7.3 Energy Balance......Page 660
12.8 Safety......Page 665
CHAPTER 13 UNSTEADY-STATE NONISOTHERMAL REACTOR DESIGN......Page 694
13.1 The Unsteady-State Energy Balance......Page 695
13.2 Energy Balance on Batch Reactors (BRs)......Page 697
13.2.1 Adiabatic Operation of a Batch Reactor......Page 698
13.2.2 Case History of a Batch Reactor with Interrupted Isothermal Operation Causing a Runaway Reaction......Page 705
13.3 Batch and Semibatch Reactors with a Heat Exchanger......Page 712
13.3.1 Startup of a CSTR......Page 714
13.3.2 Semibatch Operation......Page 719
13.4 Nonisothermal Multiple Reactions......Page 723
A.1 Useful Integrals in Reactor Design......Page 748
A.2 Equal-Area Graphical Differentiation......Page 749
A.3.B Coupled Differential Equations......Page 751
A.4 Numerical Evaluation of Integrals......Page 752
A.6 Software Packages......Page 754
APPENDIX B: IDEAL GAS CONSTANT AND CONVERSION FACTORS......Page 756
APPENDIX C: THERMODYNAMIC RELATIONSHIPS INVOLVING THE EQUILIBRIUM CONSTANT......Page 760
D.1.A About Polymath......Page 766
D.1.C Living Example Problems......Page 767
D.3 MATLAB......Page 768
D.5 COMSOL......Page 769
D.6 Aspen......Page 770
D.8 Reactor Lab......Page 771
APPENDIX E: RATE-LAW DATA......Page 772
APPENDIX F: NOMENCLATURE......Page 774
G.3 Peach Bottom Nuclear Reactor......Page 778
G.8 Cajun Seafood Gumbo......Page 779
G.9 Alcohol Metabolism......Page 780
G.10 Methanol Poisoning......Page 781
H.1 Computational Chemical Engineering......Page 782
I.1 CRE Web Resources Components......Page 784
I.2.3 Sensing vs. Intuitive Learners......Page 787
I.3 Navigation......Page 788
A......Page 790
C......Page 791
D......Page 793
E......Page 794
H......Page 796
I......Page 797
L......Page 798
M......Page 799
N......Page 800
P......Page 801
Q......Page 802
R......Page 803
S......Page 804
T......Page 806
X......Page 807
Z......Page 808