Equivariant Quantum Cohomology of Homogeneous Spaces

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Constantin Leonardo Mihalcea
Series: PhD Thesis
Publisher: University of Michigan
Year: 2005

Language: English

DEDICATION ............................................................................................................................ ii
ACKNOW LEDGEMENTS .................................................................................................... iii
LIST OF FIGURES ................................................................................................................ vi
LIST OF APPENDICES ....................................................................................................... vii
CHAPTER
1. Intro d u ctio n ................................................................................................................... 1
1.1 Motivation ............................................................................................................ 1
1.2 (Imprecise) Statement of results ........................................................................ 3
1.3 Statement of results - for experts ..................................................................... 5
1.3.1 Definitions and notations for general X = G / P ................................. 5
1.3.2 An equivariant quantum Chevalley rule and an algorithm ............... 7
1.3.3 Positivity ............................................................................................. 9
1.3.4 An equivariant quantum Giambelli formula for the Grassmannian . 9
1.4 Structure of the thesis .......................................................................................... 13
2. Prelim inaries ................................................................................................................... 14
2.1 Classical cohomology - establishing notations ................................................... 14
2.1.1 Roots and lengths .................................................................................. 14
2.1.2 Cohomology .......................................................................................... 15
2.1.3 (Schubert) Curves, divisors and degrees ... ........................................... 16
2.2 Equivariant cohomology ....................................................................................... 17
2.2.1 General fa c ts ....................................................................................... 17
2.2.2 Equivariant Schubert calculus on G / P ............................................. 19
2.3 Quantum cohomology .......................................................................................... 23
2.4 Equivariant quantum cohomology of the homogeneous spaces ......................... 25
3. Equivariant quantum Schubert calculus ............................................................... 28
3.1 The equivariant quantum Chevalley rule ........................................................ 28
3.2 Two formulae ...................................................................................................... 33
3.3 An algorithm to compute the EQLR coefficients ............................................ 39
3.3.1 Remarks about the algorithm ............................................................ 42
3.4 Consequences in equivariant cohomology of G/P .............................................. 43
3.5 A brief survey of the algorithms computing the equivariant or quantum
Littlewood-Richardson coefficients ..................................................................... 45
3.6 Appendix - Proof of the Lemma 3.11 ............................................................... 48
4. Positivity in the equivariant quantum Schubert calcu lu s ................................ 52
4.1 Preliminaries ......................................................................................................... 52
4.2 Proof of the positivity Theorem ......................................................................... 55
5. Equivariant quantum cohomology of the Grassmannian ................................... 59
5.1 General facts ......................................................................................................... 59
5.1.1 Definitions and notations for partitions ............................................. 60
5.1.2 Schubert varieties ................................................................................. 61
5.1.3 Equivariant cohomology ..................................................................... 62
5.1.4 Equivariant quantum cohomology ...................................................... 63
5.2 A vanishing property of the EQLR coefficients ................................................ 64
5.3 Equivariant quantum Chevalley-Pieri rule ......................................................... 70
5.4 Relation between the two torus actions ............................................................ 73
5.5 Computation of EQLR coefficients for some “small” Grassmannians ............ 75
5.5.1 The algorithm for the Grassmannian - revisited .............................. 75
5.5.2 Computation of the coefficients for Gr(2,5) .............................. 76
5.5.3 The coefficients for small Grassmannians ................................. 77
5.5.4 Multiplication table for QH^.(Gr(2,4 )) ............................................. 77
6. Polynomial representatives for the equivariant quantum Schubert classes
of the Grassm annian ........................................................................................................ 79
6.1 Factorial Schur functions .................................................................................... 79
6.2 Proof of the formulae .......................................................................................... 84
6.2.1 A characterization of the equivariant quantum cohomology ........... 85
6.2.2 An equivariant quantum Giambelli and presentation ..................... 86
A PPEN DICES ................................................................................................................................. 94
BIBLIOGRAPHY ........................................................................................................................... 116