Author(s): Konstantin Ardakov
Series: Astérisque 423
Publisher: Société Mathématique de France
Year: 2021
Language: English
Pages: 161
Chapter 1. Introduction
Chapter 2. Algebraic background
2.1. Enveloping algebras of Lie-Rinehart algebras
2.2. Trivialisations of skew-group rings
2.3. Equivariant sheaves on -topological spaces
Chapter 3. Equivariant differential operators on rigid analytic spaces
3.1. Automorphisms of admissible formal schemes and rigid spaces
3.2. Actions of compact -adic Lie groups on -affinoid algebras
3.3. The completed skew-group ring
3.4. Compatible actions
3.5. The localisation functor
3.6. Coadmissible equivariant -modules
3.7. is an abelian category
Chapter 4. Levelwise localisation
4.1. Noetherianity and flatness over general base fields
4.2. The sheaf on
4.3. The sheaf on
4.4. Theorems of Tate and Kiehl in the equivariant setting
Chapter 5. Beılinson-Bernstein localisation theory
5.1. Invariant vector fields on affine formal group schemes
5.2. The algebra
5.3. -affinity of the flag variety
5.4. The localisation functor is essentially surjective
Chapter 6. Extensions to general -adic Lie groups
6.1. The associative algebra
6.2. The algebra
6.3. Continuous actions on analytifications of algebraic varieties
6.4. The Localisation Theorem for
6.5. Connection to locally analytic distribution algebras
Bibliography