Epoxy-based Spacers for Gas Insulated Power Apparatus

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book offers an insight into the insulation failures in GIS/GIL and provides practical guidance for improving the insulation reliability of epoxy-based spacers. High voltage gas-insulated apparatuses, including gas-insulated switchgears (GIS) and transmission lines (GIL), playing an important role in the global power transmission system. Epoxy-based spacers are key components in GIS/GIL, playing the role of electrical insulation and mechanical support. However, insulation failures frequently occur around the epoxy-based spacers, threatening the safe operation of the electric power system. Three topics make up this book, with seven to nine chapters in each topic. In the first topic, the surface charging and discharging behaviors of epoxy-based spacers are discussed to deepen the readers’ understanding on the insulation problems in GIS/GIL. And the insulation breakdown of epoxy-based spacers is found to be closely related to the electric field distortion under complex operating conditions. In the second topic, original researches on the surface functionally graded materials (SFGM) are presented for relaxing the electric field distortion around the epoxy-based spacers in both AC and DC GIS/GIL, and a series of optimization methods and fabrication techniques for the SFGM spacers are introduced and discussed. In the last topic, the nonlinear conductivity materials (NCM), also known as self-adaptive materials or intelligent materials, are applied as coatings to adaptively regulate the electric field distributions along the surfaces of the epoxy-based spacers. Besides, the concept of the multi-dimensional functionally graded materials (MFGM) is proposed to uniform the electric field distributions in DC GIS/GIL under stationary and transient voltages, exhibiting great potential in the future application.

 

Author(s): Boxue Du, Hucheng Liang
Publisher: Springer
Year: 2022

Language: English
Pages: 493
City: Singapore

Preface
Contents
Part I Electric Field, Surface Charge, and Discharge
1 Electric Field Distribution Around Basin-Type Spacer in DC-GIS
1.1 Introduction
1.2 Mathematical Model
1.2.1 Geometric Model
1.2.2 Corona Discharge in SF6/N2 Mixture
1.2.3 Charge Transport in Epoxy Spacer
1.3 Poisson Equation
1.4 Heat Transfer in GIS
1.5 Results and Discussion
1.5.1 Effects of Surface Charge
1.5.2 Effects of Temperature
1.5.3 Effects of Shielding Electrode
1.6 Conclusion
References
2 Gas Convection Affecting Surface Charge and Electric Field Distribution Around Tri-Post Insulators in DC-GIL
2.1 Introduction
2.2 Simulation and Parameters
2.2.1 Geometry Models
2.2.2 Temperature Calculation
2.2.3 Surface Charge and Electric Field
2.2.4 Simulation Parameters
2.3 Results and Discussion
2.3.1 Temperature and Dielectric Strength
2.3.2 Surface Charge and Electric Field
2.3.3 Flashover Voltage
2.4 Conclusion
References
3 Polarity Reversal and Over Voltage Affecting Discharge Inception of Tri-Post Insulator in DC-GIL
3.1 Introduction
3.2 Simulation and Parameters
3.2.1 Geometry Model
3.2.2 Surface Charge and Electric Field
3.2.3 Overvoltage
3.2.4 Polarity Reversal
3.2.5 Micro Discharge
3.2.6 Theoretical Discharge Inception Voltage
3.3 Results and Discussion
3.3.1 Overvoltage
3.3.2 Polarity Reversal
3.3.3 Micro Discharge
3.4 Conclusion
References
4 Simulation on Surface Charge Accumulation of Epoxy Resin Under Needle-Plane Corona Discharge in Air
4.1 Introduction
4.2 Simulation Model
4.2.1 Geometric Model
4.2.2 Corona Discharge in Air
4.2.3 Charge Trapping and De-Trapping Process in the Epoxy Insulation
4.2.4 Poisson Equation
4.2.5 Surface Potential Measurement
4.3 Results and Discussion
4.4 Conclusion
References
5 Surface Charge Dynamic Behaviors of Epoxy Resin Under Combined Effects of DC and Pulse Voltages
5.1 Introduction
5.2 Experimental Arrangement
5.2.1 Sample Preparation
5.2.2 Test Procedure
5.3 Results and Discussion
5.3.1 Effect on Initial Surface Potential
5.3.2 Effect on Surface Potential Distribution
5.3.3 Effect on Surface Potential Decay
5.3.4 Trap Energy Distributions
5.4 Conclusion
References
6 Surface Charge Accumulation and Decay Behaviors of Epoxy Resin Under Combined Effects of AC and Pulse Voltages
6.1 Introduction
6.2 Experimental Arrangement
6.2.1 Sample Preparation
6.2.2 Test Procedure
6.3 Results and Discussion
6.3.1 Effects of Voltage Amplitudes
6.3.2 Effects of Pulse Numbers
6.3.3 Trap Energy Distributions
6.4 Conclusion
References
7 Effects of Surface Charge on DC Flashover Characteristics of Epoxy/BN Nanocomposites
7.1 Introduction
7.2 Experimental Arrangement
7.2.1 Sample Preparation
7.2.2 Test Procedure
7.3 Results and Discussion
7.3.1 Surface Charge Characteristics
7.3.2 Flashover Test
7.3.3 Discussion
7.4 Conclusion
References
8 Temperature Dependent Surface Charge and Discharge Behavior of Epoxy/AIN Nanocomposites
8.1 Introduction
8.2 Experimental Arrangement
8.2.1 Specimen Preparation
8.2.2 Measurement of Conductivity
8.2.3 Measurement of Surface Charge
8.2.4 Measurement of Surface Discharge
8.3 Results and Discussion
8.3.1 Properties of Test Specimens
8.3.2 Effects of Ambient Temperature
8.3.3 Effects of Adding Nanoparticles
8.4 Conclusion
References
9 Surface Charging and Discharging Behaviors of Epoxy-Based Spacer in DC-GIL
9.1 Introduction
9.2 Experimental Arrangement
9.2.1 Downsized DC-GIL Structure and Test Samples
9.2.2 Surface Charging System
9.2.3 Surface Charge Measurement System
9.2.4 Flashover Test Platform
9.3 Surface Charge and Flashover Characteristics Under DC Stress
9.3.1 Transient Process of Surface Charge Accumulation
9.3.2 Surface Charge Characteristics Under Different Voltage Levels
9.3.3 Flashover Characteristics and Analyses
9.3.4 Insulation Performances Under Different Testing Conditions
9.4 Conclusion
References
Part II Surface Functionally Graded Materials for GIL/GIS
10 Surface Functionally Graded Insulator for Electric Field Grading in AC Gas Insulated Power Apparatus
10.1 Introduction
10.2 Concept of SFGM
10.3 Fabrication of SFGM Insulator
10.3.1 Magnetron Sputtering
10.3.2 Surface Morphology
10.3.3 Dielectric Parameters Measurement
10.4 Electric Field Simulation
10.4.1 Simulation Model
10.4.2 Effects of Sputtering Layer Permittivity
10.4.3 Effects of Sputtering Layer Thickness
10.4.4 Application of Prepared Insulators
10.5 Flashover Test Results
10.6 Conclusions
References
11 Epoxy-Based Insulator with Permittivity-Graded Surface Layer by Magnetron Sputtering for Gas Insulated Lines
11.1 Introduction
11.2 BaTiO3 Layer Deposition
11.2.1 Magnetron Sputtering
11.2.2 Characterization of BaTiO3 Layer
11.3 Simulation and Optimization
11.3.1 Simulation Model
11.3.2 Optimization of Layer Thickness
11.4 SFGM Insulator Fabrication
11.5 Results and Discussion
11.5.1 Electric Field Distribution
11.5.2 Electric Field Distribution
11.6 Conclusions
References
12 Electric Field Relaxation by Surface Functionally Graded Spacer for Compact HVDC Gas Insulated Apparatus
12.1 Introduction
12.2 σ-SFGM for Electrical Field Relaxation
12.2.1 Simulation Model for SFGM Spacer
12.2.2 Calculation Results and Discussion
12.3 Fabrication of σ-SFGM Spacer
12.4 Flashover Voltage of σ-SFGM Spacer
12.5 Conclusion
References
13 Novel Insulator with Surface σ-FGM for DC Compact Gas Insulated Pipeline
13.1 Introduction
13.2 Novel Insulator with Interfacial σ-FGM
13.3 Fabrication of Insulator with Interfacial σ-FGM
13.3.1 Fabrication
13.3.2 Micromorphology
13.3.3 Surface Conductivity
13.4 Electrical Field Simulation
13.5 Improved Flashover Voltage
13.6 Conclusion
References
14 Epoxy-Based Insulator with Surface Conductivity Gradient Material for HVDC Gas Insulated Pipeline
14.1 Introduction
14.2 SFGM Fabrication by Fluorination
14.2.1 Surface Fluorination Method
14.2.2 Basic Parameters
14.3 Optimization of Insulator with SFGM
14.3.1 Insulator Model
14.3.2 Optimal Parameter Selection
14.4 Electric Field Calculation
14.4.1 Steady-State Field Distribution
14.4.2 Transient Electric Field Distribution
14.5 Flashover Test
14.5.1 Improved DC Flashover Voltage
14.5.2 Mechanism of Flashover
14.6 Conclusion
References
15 Electric Field Optimization of Epoxy-Based Spacer with Surface Conductivity Gradient Material (σ-SFGM) by Electrospinning
15.1 Introduction
15.2 Simulation Study
15.2.1 Concept of σ-SFGM Spacer
15.2.2 Optimization of σ-SFGM Spacer
15.3 Experimental Study
15.3.1 Fabrication of σ-SFGM Spacer
15.3.2 Flashover Voltage of σ-SFGM Spacer
15.3.3 Stability Test of σ-SFGM Layer
15.3.4 Conclusion
References
16 Parameter Design of Multi-dimensional Functionally Graded Materials (ε/σ-MFGM) for Epoxy-Based Spacers in HVDC GIL/GIS
16.1 Introduction
16.2 Surface Functionally Graded Materials
16.2.1 Concept of σ-SFGM
16.2.2 Steady-State Optimization of σ-SFGM
16.2.3 Transient Responses of σ-SFGM
16.3 Multi-dimensional Functionally Graded Material
16.3.1 Bulk Permittivity Gradient Optimization
16.3.2 Steady and Transient Responses of ε/σ-MFGM
16.4 Conclusion
References
Part III Electric Field Adaptive Materials for GIL/GIS
17 Nonlinear Conductive Characteristics and Mechanisms of Epoxy/SiC Composites
17.1 Introduction
17.2 Experimental Arrangement
17.2.1 DC Conductivity Measurement Platform
17.2.2 DC Breakdown Measurement Platform
17.3 Preparation and Characterization of Epoxy/SiC Composites
17.3.1 Basic Materials and Characterizations
17.3.2 Preparation Procedure of Epoxy/SiC Composites
17.3.3 Characterizations of Epoxy/SiC Composites
17.4 Conductive and Breakdown Characteristics of Epoxy/SiC Composites
17.4.1 Conductive Characteristics
17.4.2 Breakdown Characteristics
17.5 Simulation and Analysis of Nonlinear Conductive Characteristics
17.5.1 Conductive Mechanism of Epoxy/SiC Composites
17.5.2 Establishment of Simulation Model
17.5.3 Simulation Results and Analyses
17.6 Conclusion
References
18 Electric Field Simulation on Epoxy Spacer with Nonlinear Conductivity for DC-GIL
18.1 Introduction
18.2 Geometric Model and Governing Equations
18.2.1 Geometric Model
18.2.2 Material Parameters
18.2.3 Governing Equations and Boundary Conditions
18.3 Simulation Results and Analysis
18.3.1 Electric Field Distribution of Basin-Type Spacer
18.3.2 Electrical Field Regulation of the Basin-Type Spacer by Nonlinear Conductivity Materials
18.3.3 Power Loss Properties of Basin-Type Spacer
18.4 Conclusion
References
19 Field-Adaptive Materials for Epoxy-Based Insulator in HVDC GIL
19.1 Introduction
19.2 Simulation of IER Insulator Application
19.2.1 Concept of IER Insulator
19.2.2 Simulation Model
19.3 Experimental Setup and Procedure
19.3.1 Sample Preparation
19.3.2 Volume Resistivity Measurement
19.3.3 Over Test
19.4 Electrical Simulation Results
19.4.1 Effects of Coating Thickness
19.4.2 Effects of Filler Content
19.4.3 Transient Electric Field Distribution
19.5 Experimental Results and Discussion
19.5.1 Coating Thickness
19.5.2 Flashover Voltage
19.6 Conclusions
References
20 Fabrication and Evaluation of Field-Adaptive Insulator for DC-GIL Application
20.1 Introduction
20.2 Insulator Preparation and Basic Tests
20.2.1 Insulator Fabrication Technique
20.2.2 Surface Layer Morphology
20.2.3 Electrical Parameter Measurement
20.3 Simulation and Experimental Setup
20.3.1 Simulation Model
20.3.2 Flashover Test
20.4 Results and Discussion
20.4.1 Flashover Region
20.4.2 Steady-State Electrical Evaluation
20.4.3 Transient Electrical Evaluation
20.5 Conclusion
References
21 Epoxy-Based Spacer with Functionally Graded ZnO Film for HVDC Gas Insulated Line
21.1 Introduction
21.2 ZnO Film Deposition and Test
21.2.1 Magnetron Sputtering
21.2.2 Surface Morphology
21.2.3 Surface Conductivity Measurement
21.2.4 Spacer Optimization and Fabrication
21.2.5 Simulation Model
21.2.6 Spacer Optimization
21.2.7 Spacer Fabrication
21.3 Electrical Insulation Performance
21.3.1 Flashover Test Arrangement
21.3.2 DC Voltage Application
21.3.3 Polarity Reversal Voltage Application
21.4 Conclusions
References
22 Regulating Electric Field Around Post-type Insulator in DC-GIL for ITER Neutral Beam Injector
22.1 Introduction
22.2 Simulation Model
22.2.1 Simulation Model and Parameters
22.2.2 Waveform of Voltage
22.3 Results and Discussion
22.3.1 Surface Charge
22.3.2 Electric Filed Distribution
22.4 Conclusion
References
23 Electric Field Optimization and Parameter Design of Surface Nonlinear Conductivity Spacer for ±500 kV DC-GIL
23.1 Introduction
23.2 Simulation Model
23.2.1 Geometric Structure
23.2.2 Numerical Equations
23.3 Surface Charge and Electric Field Distributions Under Different Conditions
23.3.1 At Room Temperature
23.3.2 Effects of Temperature Gradient
23.3.3 Effects of Rough Electrode Surface
23.3.4 Effects of Metal Particle
23.3.5 Effects of Polarity Reversal Voltage
23.4 Parameter Optimization of SNC Spacer
23.4.1 Relation Between SNC Parameters and Spacer Properties
23.4.2 Guidelines for Designing SNC Spacer
23.5 Conclusion
References
24 Surface Charge and Electric Field Regulation of Surface Nonlinear Conductivity Spacers
24.1 Introduction
24.2 Design and Fabrication of SNC Spacers
24.2.1 Spacer Design by Parameter Map
24.2.2 Spacer Fabrication by Soak Coating Method
24.3 Electric Field Measurement on Electrode Surfaces
24.3.1 Principle of Electric Field Sensor
24.3.2 Development of Measurement System
24.4 Surface Charging and Discharging Characteristics of SNC Spacers
24.4.1 Surface Charge Distributions of SNC Spacers
24.4.2 Flashover Characteristics of SNC Spacers
24.5 Regulating Effects of SNC Spacers Under Different Testing Conditions
24.5.1 Effects of Metal Particle
24.5.2 Effects of Temperature Gradient
24.5.3 Effects of Polarity Reversal Voltage
24.6 Conclusion
References
25 Electric Field Control by Multi-dimensional Functional Materials for DC-GIS Spacer
25.1 Introduction
25.2 Design Concept and Simulation
25.2.1 Concept of MDFM
25.2.2 Geometry Structure
25.2.3 Spacer Arrangement
25.2.4 Simulation Conditions
25.3 Results and Discussion
25.3.1 DC-Steady
25.3.2 DC-ON
25.3.3 DC-PR
25.3.4 DC-SI
25.4 Conclusion
References