The second edition of this successful book highlights the widespread use of enzymes in food processing improvement and innovation, explaining how they bring advantages. The properties of different enzymes are linked to the physical and biochemical events that they influence in food materials and products, while these in turn are related to the key organoleptic, sensory and shelf life qualities of foods.Fully updated to reflect advances made in the field over recent years, new chapters in the second edition look at the use of enzymes in the reduction of acrylamide, in fish processing and in non-bread cereal applications such as flour confectionery. Genetic modification of source organisms (GMO) has been used to improve yields of purer enzymes for some time now but the newer technology of protein engineering (PE) of enzymes has the potential to produce purer, more targeted products without unwanted side activities, and a chapter is also included on this important new topic. Authors have been selected not only for their practical working knowledge of enzymes but also for their infectious enthusiasm for the subject.The book is aimed at food scientists and technologists, ingredients suppliers, geneticists, analytical chemists and quality assurance personnel.
Author(s): Robert J. Whitehurst, Maarten Van Oort
Edition: 2
Publisher: Wiley-Blackwell
Year: 2009
Language: English
Pages: 384
Enzymes in Food Technology......Page 3
Contents......Page 5
Contributors......Page 13
Preface......Page 15
1.1 History......Page 17
1.2 Nomenclature of enzymes......Page 18
1.3.1 The function of enzymes in nature......Page 19
1.3.3 Specificity of enzymes......Page 20
1.3.4 Mechanisms......Page 21
1.4 Enzyme kinetics......Page 22
1.5.2 Substrate concentration......Page 24
1.5.4 Cofactors......Page 25
1.5.6 Inhibitors......Page 26
1.6 Industrial enzymes......Page 27
1.7.1 Food biotechnology......Page 29
1.9 Enzyme allergy......Page 30
1.10 Summary and conclusions......Page 32
2.1 Introduction......Page 34
2.2 Recombinant DNA technology......Page 36
2.2.1 ‘Shotgun’ cloning......Page 39
2.2.4 Application examples......Page 40
2.3 Protein engineering......Page 44
2.3.1 Strategies of protein engineering......Page 46
2.3.2 Gene expression systems......Page 49
2.3.4 Applications of protein engineering – a powerful tool for the development of enzymes as applied biocatalysts......Page 50
2.4 Regulations......Page 54
2.4.1 Regulations on self-cloning......Page 55
2.4.2 Cloning and expression of genes between Streptomyces should be considered as ‘self-cloning’......Page 56
2.5 Future prospects......Page 57
3.1 Applications research and protein engineering......Page 60
3.2.1 Introduction......Page 61
3.2.3 Example: construction of a Bacillus subtilis production host......Page 62
3.3 Microbial fermentation......Page 63
3.3.3 Production fermentation......Page 64
3.4.2 Basic downstream process......Page 67
3.4.3 Purification......Page 68
3.5.1 Solid product formulation......Page 69
3.5.3 Blends......Page 71
3.6 Summary......Page 72
4.1 Introduction......Page 75
4.2 Asparaginase......Page 79
4.3 Acrylamide analysis......Page 80
4.4.1 Application testing in cereal food products......Page 81
4.4.2 Application testing in potato products......Page 87
4.4.3 Application testing in coffee......Page 96
5.2.1 The nature and identity of rennets and coagulants......Page 104
5.2.2 Main characteristics of rennets and coagulants from different sources......Page 105
5.2.3 Production of rennets and coagulants......Page 107
5.3 Lactoperoxidase......Page 108
5.4.1 Types of enzyme available commercially......Page 109
5.4.2 Enzyme addition technology......Page 110
5.4.3 Enzyme-modified cheese technology......Page 112
5.5 Lysozyme......Page 113
5.7.1 Lipolyzed milk fat (LMF)......Page 114
5.8.1 Commercial dairy products of lactase technology......Page 115
6.1.2 Wheat flour constituents......Page 119
6.1.3 Starch......Page 120
6.1.4 Gluten......Page 122
6.1.5 Non-starch polysaccharides......Page 123
6.1.6 Lipids......Page 124
6.2.2 Classification......Page 125
6.2.5 Anti-staling enzymes......Page 127
6.3 Xylanases......Page 131
6.3.1 Classification......Page 132
6.3.2 Mechanism......Page 133
6.4.1 Mechanism......Page 134
6.4.2 Lipases in bread making......Page 135
6.5.2 Oxidases in baking......Page 137
6.6.1 Classification......Page 142
6.6.2 Proteases in baking......Page 143
6.7.1 Transglutaminase......Page 145
6.7.3 Cellulases......Page 147
6.7.4 Mannanases......Page 149
6.8 Concluding remarks......Page 151
7.3 Application of enzymes in cake and muffin production......Page 160
7.4 Application of enzymes in pasta and noodle production......Page 163
7.4.1 Enzyme effects on pasta products......Page 164
7.4.2 Enzyme effects on noodles......Page 165
7.5 Application of enzymes in biscuit, cookie and cracker production......Page 167
7.6 Application of enzymes in wafers......Page 171
7.7 Use of enzymes in wheat flour tortilla......Page 172
7.8 Application of enzymes in breakfast cereals......Page 173
7.9.1 Asparaginase to reduce acrylamide content in wheat-based baked products......Page 174
8.2 Malting: the transformation of raw barley to an enzyme-rich package......Page 179
8.2.2 Germination......Page 182
8.2.3 Kilning......Page 188
8.3.1 Milling......Page 189
8.3.2 Mashing......Page 190
8.3.4 Enzymes in lautering/mash filtration......Page 196
8.4 Adjunct brewing......Page 198
8.4.1 Brewing with raw barley as adjunct......Page 199
8.4.2 Brewing with maize or rice as adjunct......Page 200
8.4.3 Brewing with sorghum as adjunct......Page 201
8.5.1 Enzymatic processes in yeast fermentation......Page 202
8.5.2 Exogenous enzymes applied during fermentation......Page 203
8.5.3 Low carbohydrate beer production......Page 204
8.6 Beer stabilization......Page 206
8.7 The future of enzymes in brewing......Page 207
8.8 Conclusion......Page 209
9.1.1 Starch-hydrolyzing enzymes......Page 211
9.2.1 Introduction......Page 216
9.2.3 Pectin......Page 217
9.2.4 Polyphenols......Page 218
9.2.5 Wine varietal aromas and their precursors in grapes......Page 219
9.2.6 Legal aspects of the use of enzymes in winemaking......Page 220
9.2.7 GMO transparency......Page 222
9.2.9 Winemaking enzymes composition and formulation......Page 223
10.2 Proteases......Page 227
10.2.1 Applications of proteases......Page 228
10.3.1 Endogenous TGase......Page 238
10.3.2 Microbial transglutaminase (MTGase)......Page 241
11.1 Introduction......Page 252
11.2.1 Pectin......Page 253
11.2.4 Starch......Page 255
11.3 Pectin degrading enzymes......Page 256
11.4.1 Production......Page 257
11.4.2 Specifications......Page 258
11.4.4 Genetically modified microorganisms......Page 259
11.5 Enzymes for fruit processing......Page 260
11.5.1 Apple processing......Page 261
11.5.2 Red berry processing......Page 264
11.5.3 Tropical fruit processing......Page 268
11.5.4 Citrus processing......Page 273
11.6 Fruit firming......Page 276
11.8 New trends and conclusion......Page 277
12.2 Meat as raw material......Page 280
12.2.2 Chemistry and biochemistry of muscle......Page 281
12.2.3 Conversion of muscle to meat......Page 282
12.2.4 Factors in meat processing......Page 283
12.3.1 Proteases and peptidases......Page 284
12.3.2 Lipases......Page 287
12.3.3 Transglutaminase......Page 288
12.3.5 Glutaminase......Page 289
12.4 Meat tenderization with added enzymes......Page 290
12.4.1 Methods for enzyme application in meat tenderization......Page 291
12.5.1 Proteolysis and lipolysis in meat flavour development......Page 292
12.6 Structure engineering by cross-linking enzymes......Page 293
12.6.1 Restructuring of unheated meat......Page 295
12.6.2 Processed meat systems......Page 296
12.8 Future prospects......Page 299
13.2 The hydrolysis reaction......Page 308
13.3 Controlling the hydrolysis reaction......Page 309
13.4 Proteases......Page 311
13.5.1 Taste......Page 312
13.5.2 Solubility......Page 316
13.5.3 Viscosity......Page 317
13.5.4 Emulsification......Page 318
13.5.5 Foaming......Page 320
13.5.6 Gelling......Page 321
13.5.8 Bioactive peptides......Page 323
13.6.2 Hydrolysis......Page 325
13.6.3 Inactivating the proteases......Page 326
13.6.4 Recovery of the protein/peptide product......Page 329
13.7 Protein hydrolyzates on the market......Page 330
13.8 Conclusion......Page 331
14.2 Starch and starch-active enzymes......Page 336
14.3 Starch hydrolysis......Page 337
14.5 Isomaltooligosaccharides......Page 341
14.6 Amylases in baking (see also Chapter 6)......Page 342
14.8 Cyclodextrins......Page 343
14.10 Branched dextrins......Page 344
14.11 Conclusions......Page 345
15.1 Introduction......Page 348
15.2 Enzyme biochemistry......Page 349
15.3 Interesterification......Page 350
15.4 Hydrogenation and chemical interesterification......Page 351
15.5 Enzymatic interesterification......Page 352
15.5.1 Oil quality specifications......Page 355
15.5.2 Improving oil quality......Page 357
15.5.3 Practical operation of EIE......Page 358
15.6.1 Phospholipid structure and phospholipases......Page 360
15.6.2 Mechanism of enzymatic degumming......Page 361
15.6.3 Industrial experience with enzymatic degumming......Page 363
15.6.4 Process developments in enzymatic degumming......Page 364
15.6.5 Future developments in enzymatic degumming......Page 366
15.7 Ester synthesis......Page 368
15.8 Speciality fats......Page 369
15.9 Environmental benefits of enzymatic processing......Page 371
15.10.2 Alternative immobilization systems......Page 372
15.10.3 Alternative reaction systems......Page 373
15.11 Conclusions......Page 374
Index......Page 376
Food Science and Technology......Page 385
Colour plate section after page 210......Page 387