Author(s): Jenny Dankelman, Cornelis A. Grimbergen, Henk G. Stassen
Edition: 1
Year: 2004
Language: English
Pages: 321
Contents......Page 6
Series Foreword......Page 12
Preface......Page 16
Contributors......Page 18
1.1. Minimally Invasive Surgery......Page 23
1.2. History of Minimally Invasive Surgery......Page 24
1.3. Open Surgery Versus Minimally Invasive Surgery......Page 25
1.3.1. Description of the Surgical Process; a Man–Machine System Approach......Page 26
1.3.2. Advantages and Disadvantages of Laparoscopic Surgery for the Patient and the Surgeon......Page 27
1.4.1. History......Page 32
1.4.2. Steering the Catheter......Page 33
1.5. Clinically-Driven Research......Page 35
1.5.1. Assessment of Operations......Page 36
2.1. Introduction......Page 41
2.1.1. The Current State of Quality Analysis in Surgery......Page 42
2.1.2. Industrial Process Analysis......Page 43
2.1.3. The Surgical Process as a Complex System......Page 44
2.2.1. Terminology......Page 45
2.2.2. Process Analysis in Seven Steps......Page 46
2.2.3. Improving Quality and Efficiency......Page 53
2.3.1. Efficiency of Surgical Task Performance......Page 55
2.3.2. Evaluation of Instruments......Page 57
2.4. Discussion......Page 59
3.1. Introduction......Page 67
3.2. Observation: Impeding Effects and Supporting Aids......Page 68
3.2.1. Acquisition of the Visible Information......Page 69
3.2.2. Nature of the Visible Information......Page 72
3.2.3. Perception of the Visible Information......Page 73
3.3. Manipulation: Impeding Effects and Supporting Aids......Page 82
3.3.1. Transformation of Spatial Movements of the Hand......Page 83
3.3.2. Transformation of Grasping Movements of the Hand......Page 92
3.4. Discussion......Page 99
4.2. Background on Eye–Hand Coordination......Page 113
4.3.1. Compensation for Mislocation......Page 116
4.3.2. Compensation for Misorientation......Page 118
4.3.3. Benefits and Drawbacks of Master-Slave Systems......Page 119
4.4.1. Background of the Experiment......Page 120
4.4.2. Materials and Methods......Page 121
4.4.3. Results......Page 125
4.4.4. Discussion......Page 126
4.5.1. Benefits of a Steerable Endoscope......Page 129
4.5.2. Development of Endo-Periscope I......Page 132
4.5.3. Development of Endo-Periscope II......Page 136
4.5.4. Further Developments......Page 140
4.6. Discussion......Page 142
5.1. Introduction......Page 147
5.2.1. Ideal Force Transmission Characteristics......Page 148
5.2.2. Mechanical Evaluation of Laparoscopic Graspers......Page 149
5.3. Laparoscopic Grasper With Force Perception......Page 153
5.4.1. Methods......Page 157
5.4.2. Results......Page 159
5.5. Discussion......Page 160
6.1. Difficulties Using Laparoscopic Forceps......Page 165
6.2.2. The Influence of Pinch and Pull Force......Page 168
6.3. Judging Jaw Designs......Page 169
6.4.1. Materials and Methods......Page 171
6.4.2. Results......Page 174
6.4.3. Discussion......Page 176
6.5.1. Guidelines for the Design of Jaws of Laparoscopic Forceps......Page 177
6.5.2. Guidelines for the Use of Laparoscopic Forceps......Page 178
6.6. Conclusion......Page 179
7.1. Introduction......Page 183
7.2. Overview of Instrument Positioners......Page 184
7.3. Design of the Passist......Page 187
7.4. First Clinical Results......Page 188
7.5.1. Methods......Page 190
7.5.2. Results......Page 194
7.6. Discussion......Page 196
7.7. Conclusion......Page 199
8.1. Introduction......Page 203
8.3. Subtalar Arthrodesis: Development of a New Technique......Page 204
8.3.1. Measurement of (Mal)alignment of the Hindfoot......Page 205
8.3.2. Development of a Compliant Instrument for Subtalar Joint Fusion......Page 208
8.4.1. Behavior of Arthroscopic Irrigation Systems......Page 212
8.4.2. Development of a Sheath for Arthroscopy......Page 216
8.5. Meniscectomy: Development of Steerable Punch......Page 218
8.6. Discussion......Page 222
9.1. Introduction......Page 227
9.2. The Current State of Virtual Colonoscopy......Page 229
9.2.2. Image Acquisition......Page 230
9.2.4. 3D Diagnostic Examination......Page 231
9.3.2. Conventional 3D Display......Page 233
9.3.3. Unfolded Cubic Projection......Page 234
9.3.5. Outcome Parameters and Statistical Analysis......Page 236
9.4. Results......Page 237
9.5. Discussion......Page 240
9.6. Conclusion......Page 243
10.1. Introduction......Page 249
10.2.1. Time-Action Analysis......Page 250
10.2.3. Radiation Usage During Diagnostic and Interventional Procedures......Page 254
10.3.1. Introduction......Page 257
10.3.2. Navigation System: Description and Functioning......Page 258
10.3.3. System Characterization......Page 261
10.4. Discussion......Page 267
11.1. Introduction......Page 275
11.3.1. Size Restrictions and Consequences......Page 276
11.3.3. Sensor Functioning......Page 280
11.3.4. Patient Safety......Page 281
11.3.6 Packaging......Page 283
11.4. Example of a Sensor Design, Multisensor......Page 285
11.4.1. Sensing Principles......Page 286
11.4.2. Fabrication Techniques......Page 288
11.5. Conclusion......Page 290
12.1. Introduction......Page 293
12.2. Present and Future Problems in Minimally Invasive Surgery......Page 294
12.3. The Training of Minimally Invasive Surgery......Page 297
12.4. Future Problems in Minimally Invasive Surgery Training......Page 299
12.5. Retrospect......Page 302
B......Page 304
C......Page 305
F......Page 306
H......Page 307
J......Page 308
L......Page 309
O......Page 310
S......Page 311
W......Page 313
Z......Page 314
C......Page 316
G......Page 317
M......Page 318
S......Page 319
V......Page 320