Engineering Analysis with ANSYS Software

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

For all engineers and students coming to finite element analysis or to ANSYS software for the first time, this powerful hands-on guide develops a detailed and confident understanding of using ANSYS's powerful engineering analysis tools. The best way to learn complex systems is by means of hands-on experience. With an innovative and clear tutorial based approach, this powerful book provides readers with a comprehensive introduction to all of the fundamental areas of engineering analysis they are likely to require either as part of their studies or in getting up to speed fast with the use of ANSYS software in working life. Opening with an introduction to the principles of the finite element method, the book then presents an overview of ANSYS technologies before moving on to cover key applications areas in detail.Key topics covered:Introduction to the finite element methodGetting started with ANSYS softwarestress analysis dynamics of machines fluid dynamics problemsthermo mechanics contact and surface mechanicsexercises, tutorials, worked examples With its detailed step-by-step explanations, extensive worked examples and sample problems, this book will develop the reader's understanding of FEA and their ability to use ANSYS's software tools to solve their own particular analysis problems, not just the ones set in the book. * Develops a detailed understanding of finite element analysis and the use of ANSYS software by example * Develops a detailed understanding of finite element analysis and the use of ANSYS software by example * Exclusively structured around the market leading ANSYS software, with detailed and clear step-by-step instruction, worked examples, and detailed, screen-by-screen illustrative problems to reinforce learning

Author(s): Tadeusz Stolarski, Y. Nakasone, S. Yoshimoto,
Year: 2007

Language: English
Pages: 473

FRONT COVER......Page 1
ENGINEERING ANALYSIS WITH ANSYS SOFTWARE......Page 4
COPYRIGHT PAGE......Page 5
CONTENTS......Page 6
PREFACE......Page 14
THE AIMS AND SCOPE OF THE BOOK......Page 16
CHAPTER 1 BASICS OF FINITE-ELEMENT METHOD......Page 18
1.1.1 Sub-domain method (Finite volume method)......Page 19
1.1.2 Galerkin method......Page 21
1.2 RAYLEIGH–RITZ METHOD......Page 22
1.3 FINITE-ELEMENT METHOD......Page 24
1.3.1 One-element case......Page 27
1.3.2 Three-element case......Page 28
1.4 FEM IN TWO-DIMENSIONAL ELASTOSTATIC PROBLEMS......Page 31
1.4.1 Elements of finite-element procedures in the analysis of plane elastostatic problems......Page 32
Equations of equilibrium......Page 33
1.4.2.3 Stress–strain relations (constitutive equations)......Page 34
1.4.2.4 Boundary conditions......Page 36
1.4.4.1 Strain–displacement matrix or [B] matrix......Page 38
1.4.4.3 Element stiffness equations......Page 42
1.4.4.4 Global stiffness equations......Page 44
1.4.4.5 Example: Finite-element calculations for a square plate subjected to uniaxial uniform tension......Page 47
BIBLIOGRAPHY......Page 51
2.1 INTRODUCTION......Page 54
2.2.1 Preliminaries......Page 55
2.2.2 Saving and restoring jobs......Page 57
2.2.3 Organization of files......Page 58
2.2.4 Printing and plotting......Page 59
2.3.1 Building a model......Page 60
2.3.1.1 Defining element types and real constants......Page 61
2.3.1.2 Defining material properties......Page 63
2.3.2.1 Creating the model geometry......Page 64
2.3.2.2 Applying loads......Page 65
2.4 SOLUTION STAGE......Page 66
2.5 POSTPROCESSING STAGE......Page 67
3.1 CANTILEVER BEAM......Page 68
3.1.1 Example problem: A cantilever beam......Page 69
3.1.3.1 Creation of an analytical model......Page 70
3.1.3.2 Input of the elastic properties of the beam material......Page 73
3.1.3.3 Finite-element discretization of the beam area......Page 74
3.1.3.4 Input of boundary conditions......Page 79
3.1.3.5 Solution procedures......Page 88
3.1.3.6 Graphical representation of the results......Page 90
3.1.5 Problems to solve......Page 93
A3.1 Creation of a stepped beam......Page 97
A3.2 Creation of a stepped beam with a rounded fillet......Page 98
3.2.1 Example problem: An elastic strip subjected to distributed uniaxial tensile stress or negative pressure at one end and clamped at the other end......Page 101
3.2.3.1 Creation of an analytical model......Page 102
3.2.3.3 Finite-element discretization of the strip area......Page 103
3.2.3.4 Input of boundary conditions......Page 105
3.2.3.5 Solution procedures......Page 106
3.2.4 Discussion......Page 109
3.3.1 Example problem: An elastic plate with an elliptic hole in its center subjected to uniform longitudinal tensile stress σ[sub(o)] at one end and damped at the other end......Page 110
3.3.3.1 Creation of an analytical model......Page 111
3.3.3.2 Input of the elastic properties of the plate material......Page 114
3.3.3.3 Finite-element discretization of the quarter plate area......Page 115
3.3.3.4 Input of boundary conditions......Page 116
3.3.3.5 Solution procedures......Page 117
3.3.3.7 Observation of the variation of the longitudinal stress distribution in the ligament region......Page 118
3.3.4 Discussion......Page 119
3.3.5 Problems to solve......Page 122
3.4.2 Problem description......Page 123
3.4.3.1 Creation of an analytical model......Page 124
3.4.3.3 Finite-element discretization of the centercracked tension plate area......Page 127
3.4.3.4 Input of boundary conditions......Page 130
3.4.3.5 Solution procedures......Page 131
3.4.3.6 Contour plot of stress......Page 132
3.4.4 Discussion......Page 133
3.4.5 Problems to solve......Page 135
3.5.2 Problem description......Page 137
3.5.3.1 Creation of an analytical model......Page 138
3.5.3.3 Finite-element discretization of the cylinder and the flat plate areas......Page 140
3.5.3.4 Input of boundary conditions......Page 150
3.5.3.5 Solution procedures......Page 152
3.5.4 Discussion......Page 153
3.5.5 Problems to solve......Page 155
REFERENCES......Page 158
4.1 INTRODUCTION......Page 160
4.2.2 Analytical solution......Page 161
4.2.3.1 Element type selection......Page 162
4.2.3.3 Material properties......Page 164
4.2.3.4 Create keypoints......Page 166
4.2.3.5 Create a line for beam element......Page 168
4.2.3.6 Create mesh in a line......Page 169
4.2.3.7 Boundary conditions......Page 171
4.2.4.1 Definition of the type of analysis......Page 174
4.2.4.2 Execute calculation......Page 176
4.2.5.3 Read the calculated results of the second and third modes of vibration......Page 178
4.3.2.1 Element type selection......Page 180
4.3.2.2 Real constants for beam element......Page 182
4.3.2.4 Create keypoints......Page 185
4.3.2.5 Create areas for suspension......Page 188
4.3.2.6 Boolean operation......Page 192
4.3.2.7 Create mesh in areas......Page 194
4.3.2.8 Boundary conditions......Page 196
4.3.3.2 Execute calculation......Page 199
4.3.4.2 Plot the calculated results......Page 200
4.3.4.3 Read the calculated results of higher modes of vibration......Page 201
4.4.1 Problem description......Page 205
4.4.2.2 Material properties......Page 206
4.4.2.3 Create keypoints......Page 209
4.4.2.4 Create areas for the table......Page 210
4.4.2.5 Create mesh in areas......Page 214
4.4.2.6 Boundary conditions......Page 218
4.4.3.1 Define the type of analysis......Page 222
4.4.3.2 Execute calculation......Page 225
4.4.4.2 Plot the calculated results......Page 226
4.4.4.3 Read the calculated results of the second and third modes of vibration......Page 227
4.4.4.4 Animate the vibration mode shape......Page 228
5.1 INTRODUCTION......Page 232
5.2.2.1 Select kind of analysis......Page 233
5.2.2.2 Element type selection......Page 234
5.2.2.3 Create keypoints......Page 236
5.2.2.4 Create areas for diffuser......Page 238
5.2.2.5 Create mesh in lines and areas......Page 239
5.2.2.6 Boundary conditions......Page 243
5.2.3.1 FLOTRAN set up......Page 248
5.2.4 Execute calculation......Page 250
5.2.5.2 Plot the calculated results......Page 251
5.2.5.3 Plot the calculated results by path operation......Page 254
5.3.2.1 Select kind of analysis......Page 259
5.3.2.3 Create keypoints......Page 260
5.3.2.5 Subtract the valve area from the channel area......Page 262
5.3.2.6 Create mesh in lines and areas......Page 263
5.3.2.7 Boundary conditions......Page 265
5.3.3.1 FLOTRAN set up......Page 268
5.3.4 Execute calculation......Page 270
5.3.5.1 Read the calculated results......Page 271
5.3.5.2 Plot the calculated results......Page 272
5.3.5.3 Detailed view of the calculated flow velocity......Page 273
5.3.5.4 Plot the calculated results by path operation......Page 276
6.1 GENERAL CHARACTERISTIC OF HEAT TRANSFER PROBLEMS......Page 280
6.2.2 Construction of the model......Page 282
6.2.3 Solution......Page 293
6.2.4 Postprocessing......Page 297
6.3.1 Description of the problem......Page 302
6.3.2 Preparation for model building......Page 305
6.3.3 Construction of the model......Page 308
6.3.4 Solution......Page 315
6.3.5 Postprocessing stage......Page 323
6.4.1 Problem description......Page 329
6.4.2 Construction of the model......Page 330
6.4.3 Solution......Page 338
6.4.4 Postprocessing......Page 342
7.1 GENERAL CHARACTERISTICS OF CONTACT PROBLEMS......Page 348
Problem description......Page 349
7.2.1.2 Construction of the model......Page 350
7.2.1.3 Material properties and element type......Page 355
7.2.1.4 Meshing......Page 356
7.2.1.5 Creation of contact pair......Page 359
7.2.1.6 Solution......Page 364
7.2.1.7 Postprocessing......Page 369
7.2.2.1 Problem description......Page 376
7.2.2.2 Model construction......Page 377
7.2.2.3 Material properties......Page 382
7.2.2.4 Meshing......Page 385
7.2.2.5 Creation of contact pair......Page 389
7.2.2.6 Solution......Page 391
7.2.2.7 Postprocessing......Page 396
7.2.3.1 Problem description......Page 399
7.2.3.2 Model construction......Page 402
7.2.3.3 Properties of material......Page 408
7.2.3.4 Meshing......Page 409
7.2.3.5 Creation of contact pair......Page 415
7.2.3.6 Solution......Page 418
7.2.3.7 Postprocessing......Page 421
Problem description......Page 427
7.2.4.2 Model construction......Page 429
7.2.4.3 Selection of materials......Page 430
7.2.4.4 Geometry of the assembly and meshing......Page 440
7.2.4.5 Creating contact interface......Page 444
7.2.4.6 Solution......Page 453
7.2.4.7 Postprocessing (first load step)......Page 459
7.2.4.8 Solution (second load step)......Page 461
7.2.4.9 Postprocessing (second load step)......Page 468
D......Page 470
L......Page 471
S......Page 472
Y......Page 473