Energy Storage Systems: Optimization and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book discusses generalized applications of energy storage systems using experimental, numerical, analytical, and optimization approaches. The book includes novel and hybrid optimization techniques developed for energy storage systems. It provides a range of applications of energy storage systems on a single platform. The book broadly covers―thermal management of electronic components in portable electronic devices; modeling and optimization aspects of energy storage systems; management of power generation systems involving renewable energy; testing, evaluation, and life cycle assessment of energy storage systems, etc. This book will serve as a reference resource for researchers and practitioners in academia and industry.

Author(s): V. K. Mathew, Tapano Kumar Hotta, Hafiz Muhammad Ali, Senthilarasu Sundaram
Series: Engineering Optimization: Methods and Applications
Publisher: Springer
Year: 2022

Language: English
Pages: 472
City: Singapore

Contents
Editors and Contributors
1 Artificial Intelligence Based Integrated Renewable Energy Management in Smart City
1.1 Introduction
1.2 Smart City
1.3 Energy Management
1.4 Integrated Renewable Energy System
1.5 Artificial Intelligence (AI)
1.5.1 Genetic Algorithm (GA)
1.5.2 Particle Swarm Optimization (PSO)
1.5.3 Ant Colony Optimization (ACO)
1.5.4 Hill Climbing Optimization
1.5.5 Neural Network Algorithm
1.5.6 Artificial Neural Network Approach in IRES
1.6 Concluding Remarks
References
2 The Role of Lower Thermal Conductive Refractory Material in Energy Management Application of Heat Treatment Furnace
2.1 Introduction
2.1.1 Heat Treatment in Furnaces
2.1.2 Refractory Material
2.2 Methodology
2.2.1 Investigating Conventional Refractories
2.2.2 Development Scope for Existing Boogie Furnace
2.3 Implementation of Proposed Ceramic Fibre
2.4 Validation of Results
2.4.1 Thermographs
2.5 Artificial Neural Network
2.6 Conclusion
References
3 Thermal Energy Storage Methods and Materials
3.1 Thermal Energy Storage Methods
3.1.1 Introduction
3.1.2 Available Thermal Energy and Its Utilization
3.1.3 Thermal Energy Storage
3.1.4 Energy Demand
3.1.5 Energy Storage Future aspects
3.1.6 Energy Storage Methods
3.2 Thermal Energy Storage Materials
3.2.1 Introduction
3.2.2 Types of Thermal Energy Storage Materials (TESM)
3.2.3 Thermochemical Heat Storage
3.2.4 Latent Heat Storage Materials/Phase Change Materials (PCMs)
3.2.5 Classification of Phase Change Materials
3.2.6 Characteristics of Phase Change Materials
3.2.7 Thermal Energy Storage Materials and their Properties
3.2.8 Composite Thermal Energy Storage Materials
3.2.9 Effect of Nano-additives on Thermal-Physical Properties Enhancement
References
4 Heat Flow Management in Portable Electronic Devices
4.1 Introduction
4.2 Recent Techniques Used to Get the Heat Flow Management in Electronics Systems (Cooling Technologies)
4.2.1 Heat Sink Designs
4.2.2 Cold Plates for Portable Electronic Cooling
4.2.3 Convective Air Cooling
4.2.4 Forced Air Cooling
4.2.5 Heat Pipes
4.2.6 Peltier Cooling Devices
4.2.7 Synthetic Jet Air Cooling
4.2.8 Electrostatic Fluid Acceleration
4.2.9 Immersion Cooling Technology
4.2.10 Use of the Phase Change Material
4.3 Summary
4.4 Future Scope/Recommendations
References
5 A Review on Phase Change Material–metal Foam Combinations for Li-Ion Battery Thermal Management Systems
5.1 Introduction
5.1.1 Battery Thermal Management System (BTMS)
5.1.2 Battery C-rating
5.1.3 Thermal Conductivity Enhancement Techniques
5.2 Metal Foams: Research Progress, Prospects and Challenges
5.2.1 Review on Copper Foam–PCM Combinations
5.2.2 Review on Aluminium Foam–PCM Combinations
5.2.3 Review on Nickel Foam–PCM Combinations
5.2.4 Combination of Metal Foam and Other Thermal Conductivity Enhancers
5.3 Conclusions
References
6 Performance Enhancement of Thermal Energy Storage Systems Using Nanofluid
6.1 Introduction
6.2 Thermal Energy Storage
6.2.1 Sensible Heat Storage
6.2.2 Latent Heat Storage
6.3 Nanofluid
6.3.1 Preparation of Nanofluid
6.3.2 Hybrid Nanofluid
6.4 Phase Change Materials
6.4.1 Paraffin Wax
6.4.2 Erythritol (C4H10O4)
6.4.3 Nitrate Salts (KNO3 and NaNO3)
6.5 Conclusion
References
7 Inoculum Ratio Optimization in Anaerobic Digestion of Food Waste for Methane Gas Production
7.1 Introduction
7.1.1 Motivation
7.1.2 Present Objective
7.2 Materials and Methods
7.2.1 Initial Characterization of Substrate and Inoculum
7.2.2 Data Measurement
7.2.3 BMP Test Setup
7.2.4 Analysis of Different Parameters
7.3 Results and Discussion
7.3.1 Characterization of Food Waste and Inoculum (Cow Dung)
7.3.2 Biogas / Methane Production
7.3.3 Volatile Solids
7.3.4 Variation of Room Temperature Outside the Digester
7.4 Conclusions
References
8 Nano-Mixed Phase Change Material for Solar Cooker Application
8.1 Introduction
8.2 Phase Change Materials
8.3 Selection of PCM
8.3.1 Thermal Properties
8.3.2 Physical Properties
8.3.3 Kinetic Properties
8.3.4 Chemical Properties
8.3.5 Economics
8.4 Nano-Mixed Phase Change Material
8.5 Selection of Nanoparticles
8.6 Types of Solar Cookers
8.6.1 Box Type Solar Cooker Systems
8.6.2 Parabolic Concentrator Solar Cooker Systems
8.7 Conclusion
References
9 Technical Review on Battery Thermal Management System for Electric Vehicle Application
9.1 Introduction
9.2 Battery Thermal Management Systems
9.2.1 Temperature Effect on Battery Performance
9.2.2 Thermal Runaway Propagation in Lithium-Ion Batteries
9.2.3 Thermal Runaway Preventive Strategy
9.3 Active and Passive Cooling Strategy
9.3.1 Need of Battery Thermal Management
9.3.2 Active Cooling Strategy
9.3.3 Passive Cooling Strategy
9.3.4 Hybrid Thermal Management Approach
9.4 Conclusion and Future Recommendation
References
10 Battery Thermal Management System for EVs: A Review
10.1 Introduction
10.2 Heat Generation in Batteries
10.3 Air Cooling
10.4 Liquid Cooling
10.5 Phase Change Material Cooling
10.6 Hybrid Thermal Management System
10.7 Heat Pipe Cooling
10.8 Battery Heating Strategies
10.9 Conclusions
References
11 Design and Development of a Water-Cooled Proton Exchange Membrane Fuel Cell Stack for Domestic Applications
11.1 Introduction
11.2 Design and Fabrication Details of PEMFC Stack
11.2.1 Design and Fabrication of Cathode Flow Channel
11.2.2 Design and Fabrication of Water Plate
11.2.3 Nafion Membrane Preparation
11.2.4 Catalyst Layer Fabrication
11.2.5 Membrane Electrode Assembly (MEA)
11.2.6 Gaskets
11.2.7 Current Collector
11.2.8 Fuel Cell Assembly: Ten Stack Fuel Cell
11.2.9 Monopolar Plates
11.2.10 Bipolar Plates
11.2.11 Test Rig
11.3 Experimental Investigations
11.3.1 Single Cell Fuel Cell
11.3.2 Two Stack PEM Fuel Cell
11.3.3 Ten Stack Proton Exchange Membrane Fuel Cell
11.4 Conclusions
References
12 Analysis of Combustion and Performance Characteristics of a Producer Gas-Biodiesel Operated Dual Fuel Engine
12.1 Introduction
12.2 Experimental Method
12.3 Results and Discussion
12.3.1 Cylinder Pressure
12.3.2 Neat Heat Release Rate
12.3.3 Mean Combustion Temperature
12.3.4 BTE
12.3.5 Brake Specific Energy Consumption (BSEC)
12.4 Conclusions
References
13 Influence of Biogas Up-Gradation on Exhaust Emissions of a Dual-Fuel Engine with Thermal Barrier Coating
13.1 Introduction
13.2 Experimental Methodology
13.2.1 Biogas Production and Purification
13.2.2 Experimental Setup
13.2.3 Experimental Procedure
13.3 Results and Discussion
13.3.1 CO Emission
13.3.2 CO2 Emissions
13.3.3 HC Emission
13.3.4 NO Emission
13.3.5 Smoke Opacity
13.4 Conclusions
References
14 Predicting the Performance Enhancement of Proton Exchange Membrane Fuel Cell at Various Operating Conditions by Artificial Neural Network
14.1 Introduction
14.2 Working of a PEMFC
14.3 Literature Review
14.4 Numerical Investigations
14.5 Artificial Neural Network and Results
14.6 Conclusions
References
15 Role of Phase Change Material Thermal Conductivity on Predicting Battery Thermal Effectiveness for Electric Vehicle Application
15.1 Introduction
15.2 Methodology
15.2.1 Geological Investigation
15.2.2 CFD Methodology
15.3 Results
15.3.1 Battery Pack Scientific Evidence and Discussion
15.3.2 Battery Effectiveness for Comparative Configurations
15.4 Conclusion
References
16 Thermal Design and Numerical Investigation of Cold Plate for Active Water Cooling for High-Energy Density Lithium-Ion Battery Module
16.1 Introduction
16.2 Numerical Methodology
16.2.1 Domain Creation
16.2.2 Methodology
16.2.3 Boundary Condition
16.2.4 Numerical Formulation
16.2.5 Results Validation
16.3 Results and Discussion
16.3.1 Temperature Distribution for Without Active Cooling Strategy
16.3.2 Active Cooling Strategy Based on Conjugate Heat Transfer Model
16.3.3 Cooling Effectiveness
16.4 Conclusion
References
17 An Effective Reduction of Exhaust Emissions from Combustive Gases by Providing a Magnetic Field Through the Fuel Supply Line: SI Engine, CI Engine, and LPG Gas Stove
17.1 Introduction
17.2 Fuel Conditioning Technique Used to Control Emissions
17.3 Experimental Setup
17.3.1 AVL 437 Smoke-Metre
17.3.2 Specifications and Operating Conditions of Research Engine Test Rig
17.3.3 Specifications of LPG Gas Stove
17.3.4 Specifications of Permanent Magnet
17.4 Analyzes of Exhaust Emission of Hydrocarbon Fuel Under Magnetization Process
17.4.1 Increase in CO2 Emission—SI Engine
17.4.2 Reduction in CO Emission—SI Engine
17.4.3 Reduction in HC Emission—SI Engine
17.4.4 Increase in NO Emission—SI Engine
17.4.5 Increases in CO2 Emission—CI Engine
17.4.6 Reduction in CO Emission—CI Engine
17.4.7 Reduction in HC Emission—CI Engine
17.4.8 Increment in NO Emission—CI Engine
17.4.9 Reduction in CO and CO2 Emissions—LPG Gas Stove
17.4.10 Reduction in NO Emission—LPG Gas Stove
17.5 Conclusion
References
18 Thermo-Hydraulic Performance of High Heat Flux Electronic Chip Cooling Through Microchannel Heat Sinks with Fins on Base Plate
18.1 Introduction
18.2 Geometry Creation
18.3 Discretization
18.4 Computational Analysis
18.5 Boundary Conditions
18.6 Calculation of Performance Parameters
18.6.1 Thermal Resistance (TR)
18.7 Results and Discussion
18.7.1 Variation of BPT, HTC, Nu, PD, Cd and TR with Number of Fins
18.7.2 Temperature Contours and Pressure Contours
18.7.3 Velocity Streamline
18.8 Conclusions
References
19 Review on Characteristic Features of Jet Impingement that Favours Its Application in Solar Air Heaters
19.1 Introduction
19.2 Working of Solar Air Heaters
19.3 Jet Impingement
19.3.1 Various Flow Regions Associated with Impinging Jet
19.3.2 Impact of Design Variables on Heat Transfer Characteristics of Single Impinging Jet
19.3.3 Impact of Design Variables on Heat Transfer Characteristics of Multi-impinging Jet
19.4 Techniques Used to Improve the Low-Thermal Performance of Solar Air Heaters
19.5 Solar Air Heat with Jet Impingement (SAHWJ)
19.6 Concluding Remarks
19.7 Suggestion for Future Studies
References
20 Thermal Management of Electronics Systems—Current Trends and Future Applications
20.1 Introduction
20.2 Reliability of Electronics Systems
20.3 Thermal Design Techniques
20.3.1 Heatsink
20.3.2 Vents and Louvers
20.3.3 Heat Exchangers
20.3.4 Phase Change Materials
20.4 Application of Thermal Management Technologies
20.4.1 Thermal Design of Telecommunication Systems
20.4.2 LED Cooling
20.4.3 Thermal Design of Automobile Electronics
20.4.4 Battery Cooling
20.5 Optimization of Cooling Systems
20.6 Conclusion
References
21 Carbon Dioxide Storage and Its Energy Transformation Applications
21.1 Introduction
21.2 Carbon Dioxide Storage
21.3 Technologies for Capturing CO2
21.3.1 Post-combustion Capture
21.3.2 Pre-combustion Capture
21.3.3 Oxyfuel Combustion Capture
21.3.4 Absorption Process
21.3.5 Cryogenic Process
21.3.6 Membranes
21.3.7 Microbial Systems
21.3.8 Adsorption
21.4 Features of a Promising Carbon Adsorbent for Gas Storage Systems
21.5 Applications of CO2 Storage
21.5.1 Adsorbent-Based Cooling System
21.6 Conclusions
References