Emerging Nanomaterials for Advanced Technologies

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Over the past decade the world has seen the rise of the fascinating and diverse field currently recognized as nanotechnology. This book covers a broad spectrum of topics within nanotechnology, including synthesis techniques, various innovative characterization techniques, growth mechanisms of nanomaterials, the physics and chemistry of nanomaterials, diverse functionalization methods, and the various applications of nanomaterials in biology, therapeutics, energy, food science, and environmental science. It also discusses applications of nanostructured materials, integrative applications such as nano- and micro-electronic sensor devices, as well as agricultural and environmental remediation applications. The book also includes a discussion of advances in functionalized nanomaterials (0D, 1D, 2D and 3D) and covers the early stages of the development of functionalized nanostructures, considering the future for 2D nanomaterials and 3D objects. Additionally, it includes a chapter on nanomaterial research development that highlights work on the life-cycle analysis of nanostructured materials and toxicity aspects.

This book proves useful for researchers and professionals working in the field of nanomaterials and green technology, as well as in the field of nanotechnology. It should be useful to students and specialized researchers in a number of disciplines ranging from biology, chemistry, and materials science to engineering and manufacturing in both academia and industry.

Author(s): Anand Krishnan, Balasubramani Ravindran, Balamuralikrishnan Balasubramanian, Hendrik C. Swart, Sarojini Jeeva Panchu, Ram Prasad
Series: Nanotechnology in the Life Sciences
Publisher: Springer
Year: 2022

Language: English
Pages: 795
City: Cham

Preface
Contents
Contributors
About the Editors
Chapter 1: An Insight on Emerging Nanomaterials for the Delivery of Various Nutraceutical Applications for the Betterment of Heath
1.1 Introduction
1.1.1 Role of Nutraceuticals
1.1.1.1 The Functional Role of Nutraceuticals
1.1.2 Role of Phytonutrients
1.2 Classification of Nutraceuticals
1.2.1 Nutraceuticals with Nutrients
1.2.2 Nutraceuticals with Phytochemicals
1.2.3 Nutraceuticals with Dietary Supplements
1.3 Sources of Nutraceuticals
1.4 Recent Trends of Nutraceuticals in the Global Market
1.5 Bioavailability of Bioactive Compounds of Nutraceuticals
1.5.1 Enhancing the Bioavailability of Nutraceuticals by Nanotechnology
1.6 Nanotechnology
1.6.1 Nanocarriers as Nano Delivery System
1.6.2 Synthesis of Nanoparticles
1.6.3 Scenarios of Nanotechnology in Nutraceuticals
1.7 Food-Grade Nanomaterials
1.7.1 Lipid as Nanomaterials
1.7.2 Polymer as Nanomaterials
1.7.3 Cellulose as Nanomaterials
1.7.4 Protein as Nanomaterials
1.7.5 Polysaccharide as Nanomaterials
1.8 Conclusion
References
Web Reference
Chapter 2: Nanoscale Smart Drug Delivery Systems and Techniques of Drug Loading to Nanoarchitectures
2.1 Introduction
2.2 Nanoscale Drug Delivery Strategies
2.2.1 Passive and Active Targeting
2.2.2 Cellular Internalization of Drug Nanocarriers by Endocytosis
2.2.3 Release of Drug from Nanoparticles
2.3 Nanoparticle Drug Delivery Systems
2.3.1 Classification of Nanoparticles Based on Composition
2.4 Organic Nanoparticles as Drug Carriers
2.4.1 Lipid-Based Amphiphilic Drug Delivery Systems
2.4.1.1 Nanoliposomes
2.4.1.2 Solid Lipid Nanoparticles (SLNs)
2.4.2 Polymer-Based Drug Delivery Systems
2.4.2.1 Polymer-Based Micelle and Vesicles
2.4.2.2 Polymer-Based Nanogels
2.4.2.3 Dendrimer-Polymeric Nanocarriers
2.4.3 Carbon-Based Drug Delivery Systems
2.4.3.1 Carbon Nanotubes (CNTs)
2.4.3.2 Fullerenes
2.4.3.3 Graphenes
2.5 Inorganic Nanoparticles as Drug Carriers
2.5.1 Gold Nanoparticles (Au NPs)
2.5.2 Nanoshells
2.5.3 Quantum Dots (QDs)
2.5.4 Superparamagnetic Iron-Oxide Nanoparticles (SPIONs)
2.5.5 Mesoporous Silica Nanoparticles (MSNs)
2.6 Techniques for Drug Loading to Nanoparticles
2.6.1 Drug Loading to Polymeric Nanoparticles
2.6.1.1 Nanoparticles Synthesized by Polymerization Method
2.6.1.2 Nanoparticles Synthesized from Synthetic Polymers
2.6.1.3 Nanoparticles Synthesized from Natural Polymer
2.6.2 Drug Loading Techniques to Various Nanostructures
2.6.2.1 Drug Loading to Micelles
2.6.2.2 Drug Loading to SLN
2.6.2.3 Drug Loading to Nanogels
2.6.2.4 Drug Loading to Dendrimers
2.6.2.5 Drug Loading to CNTs
2.6.2.6 Drug Loading to Fullerenes
2.6.2.7 Drug Loading to Gold Nanoparticles (AuNPs)
2.6.2.8 Drug Loading to Quantum Dots
2.6.2.9 Drug Loading to MSNs
2.6.3 Drug Loading Efficiency
2.6.4 Stability and Storage of Nanoparticles
2.6.5 Conclusion
References
Chapter 3: Recent Advances in Nanomaterials-Based Drug Delivery System for Cancer Treatment
3.1 Introduction
3.2 Limitations of Conventional Cancer Treatment
3.3 Nanomaterials as Drug Delivery System for Cancer Treatment
3.4 Unique Advantages of Nano DDS
3.4.1 Particle Size (Kumar et al. 2017; Arms et al. 2018; Ghasemiyeh and Mohammadi-Samani 2018; Tiruwa 2016; Ghasemiyeh and Mohammadi-Samani 2020; Sarcan et al. 2018)
3.4.2 High Drug Payload (Ghasemiyeh and Mohammadi-Samani 2018; Meunier et al. 2017; Liu et al. 2020; Qu et al. 2016; Huang et al. 2016)
3.4.3 Controlled Drug Release (Li et al. 2016a; Kamaly et al. 2016; Deodhar et al. 2017; Liu et al. 2019a; Paris et al. 2018)
3.4.4 Surface Modification (Ahmad et al. 2018a; Choi and Meghani 2016; Ahmad et al. 2018b; Ganesan et al. 2018; Ramalingam and Ko 2016; Ramalingam and Ko 2015; Ramalingam et al. 2016)
3.5 Physiology of Tumor and Tumor Targeting Using Nano DDS
3.5.1 Angiogenesis and Tumor Vasculatures
3.5.2 Mechanisms of Tumor Targeting by Nano DDS
3.5.2.1 Passive Tumor Targeting
3.5.2.2 Active Tumor Targeting
3.6 Nano DDS for Cancer Treatment
3.6.1 Organic Nanomaterials for Cancer Treatment
3.6.1.1 Liposomes
3.6.1.2 Solid Lipid Nanoparticles
3.6.1.3 Polymeric Micelles
3.6.1.4 Dendrimers
3.6.1.5 Polymeric Nanoparticles
3.6.1.6 Polymer-Drug Conjugates
3.6.2 Inorganic Nanomaterials for Cancer Treatment
3.6.2.1 Mesoporous Silica Nanoparticles (Senapati et al. 2018; Ahmadi Nasab et al. 2018; Moreira et al. 2016; de Oliveira Freitas et al. 2017; Yang and Yu 2016; Saini and Bandyopadhyaya 2019)
3.6.2.2 Gold Nanoparticles (Sztandera et al. 2018; Peng and Liang 2019; Kumar et al. 2012; Singh et al. 2018)
3.6.2.3 Magnetic Nanoparticles (Zhang et al. 2018d; Kolosnjaj-Tabi and Wilhelm 2017; Fathi Karkan et al. 2017; Fathi et al. 2020; Lungu et al. 2016)
3.6.2.4 Carbon Nanotubes (Chen et al. 2017; Son et al. 2016; Pardo et al. 2018)
3.6.2.5 Quantum Dots (Zhao et al. 2016; Fang et al. 2017; Lee et al. 2017)
3.7 Challenges and Future Perspectives
3.8 Conclusion
References
Chapter 4: Novel Organic and Inorganic Nanoparticles as a Targeted Drug Delivery Vehicle in Cancer Treatment
4.1 Introduction
4.2 Polymeric Micelles
4.3 Polymeric Nanoparticles
4.3.1 Role of Polymeric Nanoparticles in Cancer Treatments
4.4 Liposomes
4.4.1 Liposome-Encapsulated Drugs in Cancer Treatment
4.5 Dendrimers
4.6 Polymer Drug Conjugates
4.6.1 Polymer Drug Conjugates Against Cancer
4.7 Silica Nanoparticles
4.7.1 Silica Nanoparticles toward Cancer Therapy
4.8 Gold Nanoparticles
4.8.1 Applications of Gold Nanoparticles
4.8.2 Gold Nanoparticle Toward Cancer Therapy
4.8.3 Combinational Therapy of Phytochemicals with Gold Nanoparticle in Cancer Cells
4.9 Carbon Nanotubes
4.9.1 Carbon Nanotubes in Cancer Therapy
4.10 Quantum Dots
4.10.1 Quantum Dot-Conjugated Inhibitors in Cancer Treatment
4.11 Nanographene
4.11.1 Nanographene-Conjugated Inhibitors in Cancer Treatment
4.12 Magnetic Nanoparticles
4.12.1 Role of Magnetic Nanoparticles in Cancer Treatments
4.13 Conclusion
References
Chapter 5: Potential of Metal Oxide Nanoparticles and Nanocomposites as Antibiofilm Agents: Leverages and Limitations
5.1 Introduction
5.2 Biofilms: The Way of Life of Microbial Cells
5.2.1 Stages in Biofilm Development
5.2.2 Detrimental Effects of Biofilms
5.2.3 Antibiotic and Biocide Tolerance/Resistance Mechanisms
5.3 Routes of Synthesis on Physicochemical Characteristics of MONs Influencing Antibiofilm Efficacy
5.3.1 Chemical and Hydrothermal Synthesis of MONs
5.3.2 Sol-Gel Synthesis of MONs
5.3.3 Sonochemical Synthesis of MONs
5.3.4 Coprecipitation Synthesis of MONs
5.3.5 Wet Chemical Synthesis of MONs
5.3.6 Electrochemical Synthesis of MONs
5.3.7 Biosynthesis of MONs
5.3.8 Growth of Metal Oxide Nanomaterials
5.3.9 Influence of Growth of MONs on Morphology Vis-a-vis Synthesis Methods
5.4 Applications of Metal Oxide Nanoparticles
5.5 Polymer Nanocomposites as Antibiofilm Agents
5.5.1 Silver Nanoparticles
5.5.2 Copper Oxide Nanoparticles
5.5.3 Zinc Oxide Nanoparticles
5.5.4 Titanium Dioxide Nanoparticles
5.5.5 Control of Biofilm in Biomedical Settings and Implant Surfaces
5.5.6 Control of Oral Biofilms by Polymer Nanocomposites
5.6 Mechanism of Antibacterial Action of MONs
5.7 Conclusions
References
Chapter 6: Nanomaterials for A431 Epidermoid Carcinoma Treatment
6.1 Introduction
6.1.1 Grouping of Nanoparticles
6.1.2 Types of Nanoparticles
6.1.3 Properties of Nanoparticles
6.2 Cancer and Its History
6.2.1 Epidemiology
6.2.2 Cancer and Its Classifications
6.3 Nanotherapuetics to Overcome Cancer
6.4 Epidermoid Carcinoma (Skin Cancer)
6.4.1 Sorts of Skin Growth
6.4.2 Basal Cell Carcinoma
6.4.3 Squamous Cell Carcinoma (Epidermoid Carcinoma)
6.4.4 Melanoma
6.4.5 Signs and Side Effects of Skin Disease
6.4.6 Chance Elements Prompting Skin Growth
6.4.7 Treatment of Skin Tumor
6.4.8 Curettage and Drying Up
6.4.9 Radiation Treatment
6.4.10 Cryosurgery
6.4.11 Therapeutic Treatment
6.4.12 MTT Assay for Skin cancer Cell Lines Using Green Synthesis of Nanoparticles
6.5 Nano Drug Delivery in Skin Cancer
6.5.1 Liposomes
6.5.2 Solid Lipid Nanoparticles (SLNs)
6.5.3 Dendimers
6.5.4 Quantum Dots
6.5.5 Nanotubes
6.6 Efficacy of Nano Treatment in Future for Skin Cancer
6.7 Conclusion
References
Chapter 7: Efficacy of Nanomaterials and Its Impact on Nosocomial Infections
7.1 Introduction
7.1.1 Miniature Things with Marvelous Impact
7.1.2 Infectious Disease
7.2 Infectious Agent
7.2.1 Types of Infectious Agent
7.2.1.1 Bacteria
7.2.1.2 Fungi
7.2.1.3 Virus
7.2.1.4 Prion
7.3 Antimicrobial Agents
7.4 Antifungal Agents
7.5 Nano War against Infectious Disease
7.5.1 Nanomaterials in Bacterial Detection
7.5.1.1 Magnetic Nanoparticles
7.5.1.2 Silver Nanoparticles
7.5.1.3 Gold Nanoparticles
7.5.1.4 Localized Surface Plasmon’s
7.5.1.5 Fluorescent Nanoparticles
7.6 Nanomaterials in Viral Detection
7.6.1 SERS
7.6.2 Electrochemical Biosensing
7.6.3 Other Biosensing Methods
7.7 Advanced Nano Biomaterials to Treat Infectious Disease
7.7.1 Nano Vaccine
7.7.2 Nano Adjuvant
7.7.3 Quorum Sensing
7.8 Conclusion
References
Chapter 8: Nanonutraceuticals in Chemotherapy of Infectious Diseases and Cancer
8.1 Introduction to Nanotechnology and Nutraceuticals
8.1.1 Nano Fabrication
8.1.2 Types of Nanocarriers
8.1.2.1 Lipid-Based and Surfactant-Based Nanocarriers
8.1.2.2 Biopolymeric Nanocarriers
8.2 Nutraceuticals in Biomedical Applications
8.3 Nanonutraceutical Drug Delivery System
8.4 Nanosize Nutraceutical Formulations in Biomedical Applications
8.4.1 Nanovitamins and Nanominerals
8.4.2 Nanoencapsulation of Probiotics
8.4.3 Nanophytochemicals
8.5 Nanonutraceuticals in the Chemotherapy of Cancer
8.6 Nanonutraceuticals and Anti-inflammatory Activity
8.7 Nanonutraceuticals in Medical Imaging
8.8 Nanonutraceuticals in Prophylaxis, Diagnosis, and Treatment of Infectious Diseases
8.9 Nanonutraceuticals as Antibacterial Agents
8.10 Nanonutraceuticals in Antiviral Therapy
8.11 Utilization of Nanonutraceutical in COVID-19 Therapy: Pharmacological and Toxicological Aspects
8.11.1 Toxicities of Nanonutraceuticals
8.12 Challenges and Future Perspectives
8.13 Conclusion
Bibliography
Chapter 9: Trends of Biogenic Nanoparticles in Lung Cancer Theranostics
9.1 Introduction
9.2 Classification and Molecular Biology of Lung Cancer
9.2.1 Small Cell Lung Cancer (SCLC)
9.2.2 Non-small Cell Lung Cancer (NSCLC)
9.2.3 Malignant Pleural Mesothelioma (MPM)
9.3 Limitations and Challenges of Conventional Lung Cancer Theranostics
9.4 Nanotechnology: A Promising Theranostic Tool for Lung Cancer
9.5 Role of Biogenic Nanoparticles in Lung Cancer Theranostics
9.5.1 Synthesis and Mode of Action of Gold Nanoparticles (Au NPs)
9.5.2 Fabrication and Application of Silver Nanoparticles (Ag NPs)
9.5.3 Biogenic Synthesis and Use of Magnetic Nanoparticles
9.5.4 Green Synthesis and Theranostic Use of Copper Oxide Nanoparticles (CuONPs)
9.5.5 Bio-Fabrication and Mechanism of Action of Titanium Dioxide Nanoparticles (TiO2NPs)
9.6 Trends of Semisynthetic Nanoparticles in Lung Cancer Theranostics
9.6.1 Chitosan Nanoparticles
9.6.2 Polyherbal Nanoparticles
9.7 Recent Trends, Challenges, and Future Prospects of Biogenic Nanoparticles in Lung Cancer
9.8 Conclusion
References
Chapter 10: Therapeutic Applications of Nanotechnology in the Prevention of Infectious Diseases
10.1 Introduction
10.2 Role of Nanotechnology in the Treatment of Infectious Diseases
10.3 Nanomaterials in Nanomedicine
10.4 Synthetic Nanomedicines
10.4.1 Silver Nanoparticles
10.4.2 Carbon-Based Nanoparticles
10.4.2.1 Carbon Nanotubes
10.4.2.2 Fullerenes
10.5 Gold Nanoparticles
10.6 Biological-Based Nanomedicines
10.6.1 Chitosan-Based Nanoparticles
10.6.2 Poly-L-Lactide Nanoparticles
10.7 Nanoparticle Vaccines Against Infectious Diseases
10.8 Types of Nano-Immuno Activators
10.8.1 Liposomes
10.8.2 VLPs (Virus like Particles)
10.8.3 Dendrimers
10.9 Conclusion
References
Chapter 11: Nanotechnology’s Promising Role in the Control of Mosquito-Borne Disease
11.1 Introduction
11.1.1 Nanotechnology
11.1.2 Vector-Borne Diseases
11.1.3 Nanotechnology in Mosquito Control
11.2 Drug Delivery System of Nanoparticles for Mosquitoes Borne Diseases
11.2.1 Nanoliposomes
11.2.2 Nanosuspensions
11.2.3 Polymer-Based Nanoparticles
11.3 Nanoparticle Synthesis by Biological Methods
11.3.1 Green-Based Nanoparticle
11.3.2 Microorganism-Based Nanoparticle
11.4 Nanotechnology for Arbovirus Detection and Control
11.4.1 Biosensor
11.4.2 Insect Repellents
11.5 Conclusion
References
Chapter 12: Phytosynthesized Metal Nanomaterials as an Effective Mosquitocidal Agent
12.1 Introduction
12.2 Synthesis Approaches of Metal Nanomaterials
12.2.1 Physical Approach
12.2.2 Chemical Approach
12.2.3 Biological Approach
12.3 Limitations of Physicochemical Approach Compared to Biosynthesis Approaches
12.3.1 Advantages and Disadvantages of Biological Approach
12.3.1.1 Bacteria
12.3.1.2 Fungi
12.3.1.3 Algae
12.3.1.4 Virus
12.4 Phytosynthesis of Metal Nanomaterials
12.4.1 Phytosynthesis of Common Metallic Nanoparticles
12.4.1.1 Gold Nanoparticles
12.4.1.2 Silver Nanoparticles
12.4.1.3 Copper Nanoparticles
12.4.1.4 Other Metal Nanoparticles
12.5 Mosquitocidal Activity of Metal Nanomaterials
12.5.1 Gold Nanoparticles
12.5.2 Silver Nanoparticles
12.5.3 Copper Nanoparticles
12.5.4 Other Metal Nanoparticles
12.6 Mosquitocidal Mechanism of Phytosynthesized Metal Nanoparticles
12.7 Future Perspective and Conclusion
References
Chapter 13: Perspectives of Metals and Metal Oxide Nanoparticles for Antimicrobial Consequence – An Overview
13.1 Introduction
13.1.1 What Are Nanostructures?
13.2 Metal Nanoparticles as Antimicrobial Agents
13.2.1 Mode of Action of Metal and Metal Oxide Nanoparticles
13.2.1.1 Nanoparticle Interaction with Cell Membrane
13.2.1.2 Oxidative Stress-Mediated Cell Death
13.2.1.3 Interaction of Dissolved Metal Ions with Protein and DNA
13.3 Antimicrobial Action of Nanoparticles
13.3.1 Silver Nanoparticles (Ag NPs)
13.3.2 Selenium Nanoparticles (Se NPs)
13.3.3 Magnesium Oxide Nanoparticles (MgO NPs)
13.3.4 Zinc Oxide Nanoparticles (ZnO_NPs)
13.3.5 Gold Nanoparticles (Au NPs)
13.3.6 Titanium Oxide Nanoparticles (TiO2 NPs)
13.3.7 Calcium Carbonate and Magnesium Oxide composites (CaCO3 and MgO)
13.3.8 Aluminium Oxide Nanoparticles (Al2O3 NPs)
13.3.9 Copper and Copper Oxide Nanoparticles (Cu & CuO NPs)
13.4 Nanoantibiotics: An Option to Fight Against Antibiotic Resistance
13.4.1 Silica Nanoparticles (SiO2 NPs)
13.4.1.1 Silica–Antibiotics Combination
Gentamicin-Loaded Silica Nanoparticles
Silica NPs Conjugated with Tetracycline Antibiotic
13.5 Nanoparticle and Biofilm Interaction
13.6 Application of Metallic Nanoparticles
13.6.1 Dental Materials
13.6.2 Antitumor Properties
13.6.3 Textile Industry
13.6.4 Food Management
13.6.5 Wastewater Management
13.7 Conclusion
References
Chapter 14: Advancement in Nanomaterial Synthesis and its Biomedical Applications
14.1 Introduction
14.2 Historical Development of Nanomaterials in Relevance to Biology and Medicine
14.2.1 History of Nanobiology
14.3 Infection and Their Treatment – Current Knowledge
14.3.1 Antibiotics Targeting Cell Wall
14.3.1.1 Beta-Lactam Antibiotics
14.3.1.2 Glycopeptides
14.3.2 Inhibition of Protein Biosynthesis
14.3.2.1 Inhibitors of 30S Subunits
Aminoglycosides
14.3.2.2 Inhibition of 50S Subunits
Chloramphenicol
Macrolides
Oxazolidinones
14.3.3 Inhibitors of DNA Replication
14.3.3.1 Quinolones
14.3.4 Folic Acid Metabolism Inhibitors
14.3.4.1 Sulfonamides and Trimethoprim
14.4 Mechanisms of Antimicrobial Resistance
14.4.1 Prevention of Accumulation of Antimicrobials
14.4.1.1 Efflux Pumps
14.4.1.2 Modification of Target Molecule
14.4.1.3 Antibiotic Inactivation
14.5 Non-antibiotic Treatments for Infections
14.5.1 Phage Therapy
14.5.2 Bacteriocins
14.5.3 Killing Factors
14.5.4 Antibacterial Activities of Non-antibiotic Drugs
14.5.5 Quorum Quenching
14.6 Mechanisms of Antibacterial Activity of Nanoparticles
14.6.1 Direct Absorption of Nanoparticles
14.6.2 Reactive Oxygen Species (ROS) Production
14.6.3 Cell Wall Damage
14.7 Nanomaterials in Controlling Infections
14.7.1 Nanotechnology-Based Drug Delivery Systems
14.7.1.1 Chitosan
14.7.1.2 Metallic Nanoparticles
Silver
Copper
Titanium
Magnesium
Zinc
14.7.1.3 Nitric Oxide – Releasing Nanoparticles
14.7.1.4 Drug – Infused Nanoparticles
14.7.1.5 Immunomodulatory Effects
14.7.2 Nanotechnology-Based Vaccines and Immunostimulatory Adjuvants
14.7.2.1 Synthetic Polymers
14.7.2.2 Nanoemulsions
14.7.2.3 Immune Stimulating Complexes
14.7.2.4 Cytidine-Phosphate-Guanosine (CpG) Motifs
14.7.2.5 Chitosan
14.7.2.6 Metallic Nanoparticles
14.8 Role of Nanomaterials in Other Diseases
14.8.1 Neurodegeneration
14.8.1.1 Metal Nanoparticles
14.8.1.2 Lipid-Based Nanoparticles
14.8.1.3 Hydrogels
14.8.1.4 Dendrimers
14.8.1.5 Polymeric Nanoparticles
14.8.2 Cancer Therapy
14.8.2.1 Treatment Modalities in cancer
Immune Checkpoint Modulators
Adoptive Cell Transfer
Therapeutic Antibodies
Cancer Treatment Vaccines
Chimeric Antigen Receptor T-Cell Therapy (CAR-T Cell Therapy)
Stem Cell Transplant
14.8.2.2 Nanotechnology Used in cancer Treatment
Nanocarriers
Passive Targeting
Active Targeting
Destruction from inside the Cell (Photothermal Targeting)
Simultaneous Delivery of Two Drugs
14.8.3 Nanotechnology in Diabetes Mellitus
14.8.3.1 Nanoparticles for Insulin Delivery
14.9 Future Perspective of Nanomedicine and Biology
14.10 Conclusion
References
Chapter 15: Perspectives of Nanotechnology in Aquaculture: Fish Nutrition, Disease, and Water Treatment
15.1 Introduction
15.2 Nanotechnology Application in Fish Nutrition
15.2.1 Nanoparticles’ Role in Fish Nutrition
15.2.2 Nanotechnology Application in the Aquafeed Industry
15.3 Nanotechnology Application in Aquaculture Disease Control
15.3.1 Nanoparticles as Antibacterial Agents in Aquaculture
15.3.2 Nanoparticles as Vaccine/Drug Delivery Vector
15.4 Nanotechnology Application for Water Quality Management in Aquaculture
15.4.1 Nanocatalysts and Nanoadsorbents in Aquaculture
15.5 Conclusion and Future Perspectives
References
Chapter 16: Nanomaterials in Electrochemical Biosensors and Their Applications
16.1 Introduction
16.2 Nanomaterials in Biosensors
16.3 Types of Nanomaterials in Biosensor
16.3.1 Nanosized Metal Compounds
16.3.1.1 Gold Nanoparticles (AuNPs)
16.3.1.2 Silver Nanoparticles (AgNPs)
16.3.1.3 Platinum Nanoparticles (PtNPs)
16.3.1.4 Palladium Nanoparticles (PdNPs)
16.3.1.5 Quantum Dots
16.3.1.6 Iron Oxide Nanoparticles
16.3.1.7 Zinc Oxide Nanoparticles
16.3.1.8 Other Metal Oxide Nanoparticles
16.3.2 Carbon Nanomaterials
16.3.2.1 Carbon Nanotubes (CNTs)
16.3.2.2 Graphene
16.3.3 Polymeric Nanomaterials
16.3.3.1 Conducting Polymers
16.3.3.2 Molecularly Imprinted Polymers
16.3.3.3 Dendrimers
16.3.4 Nanosized Biomaterials
16.3.4.1 Chitosan
16.3.4.2 Aptamers
16.3.4.3 DNA Nanomaterials
16.4 Applications of Nanobiosensors
16.4.1 In the Medical Field
16.4.2 In Environmental Monitoring
16.4.3 In Food Industry
16.4.4 In Agriculture
16.5 Challenges and Future Perspectives
References
Chapter 17: Nano-Adsorbents and Nano-Catalysts for Wastewater Treatment
17.1 Introduction
17.2 Synthesis Approaches for Nano-Catalysts/Adsorbents
17.2.1 Sol-Gel Method
17.2.2 Micro-Emulsion Method
17.2.3 Hydrothermal Synthesis
17.2.4 Co-precipitation
17.2.5 Polyol Synthesis
17.3 Types of Nano-Adsorbents and Nano-Catalysts
17.3.1 Metal-Based Nano Adsorbents
17.3.1.1 Iron Oxide Nano-Adsorbents
17.3.1.2 Titanium Oxide Nano-Adsorbents
17.3.1.3 Cobalt Oxide Nano-Adsorbents
17.3.1.4 Zinc Oxide Nano-Adsorbents
17.3.1.5 Mixed Metal Oxides Nano-Adsorbents
17.3.1.6 Aluminium Oxide Nano-Adsorbents
17.3.1.7 Magnesium Oxide Nano-Adsorbents
17.3.2 Polymer-Based Nano-Adsorbents
17.3.3 Silica- and Carbon-Based Nano-Adsorbents
17.3.4 Nano-Catalysts for Wastewater Treatment
17.4 Conclusion
References
Chapter 18: Nano-Bioremediation Using Biologically Synthesized Intelligent Nanomaterials
18.1 Introduction
18.2 Conventional Technology of Soil Remediation
18.2.1 Physical Methods
18.2.1.1 Vitrification
18.2.1.2 Electrokinetic Technique
18.2.1.3 Permeable Barrier System
18.2.1.4 Encapsulation
18.2.1.5 Soil Washing
18.2.2 Chemical Methods
18.2.2.1 Precipitation
18.2.2.2 Ion Exchange
18.2.2.3 Flocculation
18.2.2.4 Stabilization
18.2.3 Biological Methods
18.2.3.1 Microbial Degradation
18.2.3.2 Phytoremediation
18.3 Knowledge of Nanotechnological Application in Soil Remediation
18.3.1 Nanomaterials Used in Soil Remediation
18.3.2 Nano-Bioremediation of Organic Pollutants
18.3.3 Nano-Bioremediation of Inorganic Pollutants
18.3.4 The Fate of Nanoparticles Used in Soil System
18.4 Green Synthesis of Nanoparticle
18.5 Intelligent Nano-Biosensors for Soil Remediation: An Innovative Approach
18.6 Conclusion and Future Perspective
References
Chapter 19: Recent Developments in Nanotechnological Interventions for Pesticide Remediation
19.1 Introduction
19.2 Background of Nanotechnology
19.3 Nanobiotechnology
19.4 Nanomaterials
19.4.1 Nanoparticles in Pesticide Remediation
19.4.2 Green Synthesis of Nanoparticles
19.4.2.1 Bacterial Synthesis of Nanoparticles
19.4.2.2 Phytosynthesis of Nanoparticles
19.4.2.3 Nanoparticles Synthesized by Fungi and Yeast
19.5 Mechanism Behind Nanomaterial-Based for Pesticide Sensing and Remediation
19.5.1 Homogeneous Chemistry
19.5.2 Heterogeneous Chemistry
19.6 Various Types of Nanoparticles for Pesticide Sensing, Remediation, and Elimination
19.6.1 Metal Nanoparticles
19.6.1.1 Gold Nanoparticles
19.6.1.2 Silver Nanoparticles
19.6.1.3 Iron Nanoparticles
19.6.2 Bimetallic Nanoparticles
19.6.3 Metal Oxide Nanoparticles
19.6.3.1 Titanium Oxide Nanoparticles
19.6.3.2 Zinc Oxide Nanoparticles
19.6.3.3 Iron Oxide Nanoparticles
19.6.3.4 Silica Oxide Nanoparticles
19.7 Nanocomposites
19.8 Nanobiocomposites
19.9 Nanotubes
19.9.1 Carbon Nanotubes
19.9.2 Halloysite Nanotubes (HNTs)
19.10 Nanobioremediation
19.11 Biosensors for the Detection of Pesticides
19.11.1 Nanoparticle-Based Biosensors
19.11.1.1 Enzyme Biosensors
19.11.1.2 Immunosensor
19.11.2 Nanoparticle-Based Optical Biosensors
19.11.3 Nanotube-Based Electrochemical Biosensors
19.12 Future Perspectives
19.13 Concluding Remarks
References
Chapter 20: Potential Applications of Nanomaterials in Agronomy: An African Insight
20.1 Introduction
20.2 African Smallholder Crop Production Challenges
20.2.1 Soil Fertility Management
20.2.2 Plant Pest Management
20.2.3 Drought/Water Shortages and Management
20.3 Current Nanotechnologies in Agriculture
20.3.1 Nano-fertilizers
20.3.2 Nanopesticides
20.4 Mycosynthesis of Nanomaterials
20.5 Potential of Nanotechnologies in African Smallholder Agriculture
20.5.1 The Soil
20.5.2 The Crop Yield
20.6 Socioeconomic Implications of Nanotechnology on Agriculture
20.7 Conclusion
References
Chapter 21: Nanomaterials for Wastewater Remediation: Resolving Huge Problems with Tiny Particles
21.1 Introduction
21.2 Sources of Wastewater
21.3 Mechanism
21.4 Remediation
21.4.1 Magnetic Nanomaterials
21.4.1.1 Zero-Valent Iron Nanoparticles
21.4.1.2 Iron Oxide
21.4.1.3 Spinel Ferrites
21.4.2 Transition Metal Oxide NPs
21.4.2.1 Titania
21.4.2.2 Copper Oxide
21.4.2.3 Zinc Oxide
21.4.3 Carbon-Based Nanoparticles
21.4.3.1 Carbon Nanotubes (CNTs)
21.4.3.2 Graphene Nanomaterials
21.4.4 Nanomembranes
21.5 Conclusion and Future Prospect
References
Chapter 22: Impact of Nanomaterials on Waste Management: An Insight to the Modern Concept of Waste Abatement
22.1 Introduction
22.2 Nanomaterials in the Remediation of Toxic Chemicals and Heavy Metals
22.3 Nanotechnology in Wastewater Treatment
22.4 Nanomaterials in Solid Waste Management
22.5 Integration of Nanotechnology with Bioremediation
22.6 Risk Assessment
22.7 Recent Trends and Future Outlook
22.8 Conclusion
References
Chapter 23: Applicability of Emerging Nanomaterials in Microbial Fuel Cells as Cathode Catalysts
23.1 Introduction
23.2 Basic Principle and Architecture of Microbial Fuel Cell (MFC)
23.3 Cathode Catalysis
23.3.1 Mechanism of Oxygen Reduction Reaction (ORR)
23.3.2 Catalyst Materials Used in MFCs
23.4 Emerging Nanomaterials in Cathode Catalysis
23.4.1 Transition Metal/Metal Oxide and Alloy-Based Cathode Catalysts
23.4.2 Metal-Carbon Hybrid Catalysts
23.4.3 Metal-Activated Carbon Hybrids
23.4.4 Metal-Carbon Nanofibers (CNFs) and Nanotubes (CNTs)
23.4.5 Metal-Graphene-Based Nanocomposites
23.4.6 Metal-Conducting Polymer-Based Nanocomposites
23.5 Potentiodynamic Effects of Nanomaterials
23.6 Anode Modifications
23.7 Conclusions
References
Chapter 24: Metal Oxide Nanostructured Materials for Photocatalytic Hydrogen Generation
24.1 Introduction
24.1.1 Nanotechnology in Energy Systems
24.1.2 Present Scenario of Conventional and Potential Methods of Energy Generation
24.2 Fundamental Photocatalytic Hydrogen Generation Process
24.2.1 Thermochemical Water Splitting
24.2.2 Photobiological Water Splitting
24.2.3 Photoelectrochemical Water Splitting
24.2.4 Photocatalytic Water Splitting
24.2.4.1 Thermodynamics and Kinetics of Photocatalytic Water Splitting
24.2.4.2 Hydrogen Generation Efficiency
24.3 Heterojunction Architecture
24.3.1 Type 1
24.3.2 Type 2
24.3.3 Type 3
24.3.4 Z-Scheme
24.3.5 Binary Semiconductor Photocatalyst
24.3.5.1 Oxide-Based Binary Photocatalyst
24.3.5.2 Nitride-Based Binary Photocatalyst
24.3.5.3 Chalcogenide-Based Binary Photocatalyst
24.3.6 Ternary Oxide Photocatalysts
24.3.6.1 Perovskite Photocatalysts (ABO3 Type)
24.3.6.2 Delafossite Photocatalyst (ABO2 Type)
24.3.6.3 Spinel Photocatalyst (AB2O4 Type)
24.3.6.4 ABO4 Type Photocatalyst
24.4 Metal-Semiconductor Heterojunction Photocatalysis
24.5 Semiconductor-Semiconductor Heterojunction Photocatalyst
24.6 Modifications in Photocatalysts
24.6.1 Metal and Non-metal Implantation
24.6.2 Effect of Co-catalyst Loading
24.6.3 Dye Sensitization
24.7 Operating Conditions Affecting the Photocatalytic Hydrogen Generation
24.7.1 Particle Size
24.7.2 Surface Area
24.7.3 Reaction Temperature
24.7.4 Catalyst
24.7.5 Effect of pH
24.8 Photocatalytic Reactors
24.8.1 Thin-Film-Type Photocatalytic Reactors
24.8.2 Slurry-Type Photocatalytic Reactors
24.9 Challenges and Future Perspective
24.10 Applications of Hydrogen Generation
24.10.1 Hydrogen as a Feedstock
24.10.2 Hydrogen in Fertilizers Industries
24.10.3 Fuel Industry
24.10.4 Methanol Production
24.10.5 Hydrogen in Electronics Industry
24.10.6 Hydrogen as a Fuel
24.11 Conclusion
References
Chapter 25: Recent Advances in the Synthesis of Heterocycles Over Heterogeneous Cerium-Based Nanocatalysts
25.1 Introduction
25.2 Applications of Cerium-Based Catalysts in the Synthesis and Functionalization of Heterocycles
25.2.1 Commercial CeO2
25.2.2 Synthetic Nano-CeO2
25.2.2.1 Nanostructured CeO2 from the Co-precipitation Method
25.2.2.2 Nanostructured CeO2 from the Polymer-Directed Method
25.2.2.3 Nanostructured CeO2 from the Biology-Directed Method
25.2.3 Cerium Mixed Oxides
25.2.4 Cerium-Solid Material Composite
25.2.4.1 CeO2-Polymer
25.2.4.2 CeO2-Silica
25.2.4.3 CeO2-Clay Composite
25.2.4.4 CeO2-Carbon Template
25.2.5 CeO2 as Solid Support
25.3 Cerium-Based Catalysts for the Vapour-Phase Synthesis of Heterocycles
25.4 Cerium-Based Catalysts for the Synthesis of CO2-Derived Heterocycles
25.5 Summary and Outlook
References
Index