Elementary Linear Algebra

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The cornerstone of Elementary Linear Algebra is the authors' clear, careful, and concise presentation of material--written so that students can fully understand how mathematics works. This program balances theory with examples, applications, and geometric intuition for a complete, step-by-step learning system.The Sixth Edition incorporates up-to-date coverage of Computer Algebra Systems (Maple/MATLAB/Mathematica); additional support is provided in a corresponding technology guide. Data and applications also reflect current statistics and examples to engage students and demonstrate the link between theory and practice.

Author(s): Ron (Ron Larson) Larson, David C. Falvo
Edition: 6
Publisher: Brooks Cole
Year: 2008

Language: English
Pages: 565
Tags: Математика;Линейная алгебра и аналитическая геометрия;Линейная алгебра;

Front Cover......Page 1
Title Page......Page 4
Copyright......Page 5
CONTENTS......Page 6
A WORD FROM THE AUTHORS......Page 10
WHAT IS LINEAR ALGEBRA?......Page 18
1.1 Introduction to Systems of Linear Equations......Page 20
1.2 Gaussian Elimination and Gauss-Jordan Elimination......Page 33
1.3 Applications of Systems of Linear Equations......Page 48
Project 1 Graphing Linear Equations......Page 63
Project 2 Underdetermined and Overdetermined Systems of Equations......Page 64
2.1 Operations with Matrices......Page 65
2.2 Properties of Matrix Operations......Page 80
2.3 The Inverse of a Matrix......Page 92
2.4 Elementary Matrices......Page 106
2.5 Applications of Matrix Operations......Page 117
Project 1 Exploring Matrix Multiplication......Page 139
Project 2 Nilpotent Matrices......Page 140
3.1 The Determinant of a Matrix......Page 141
3.2 Evaluation of a Determinant Using Elementary Operations......Page 151
3.3 Properties of Determinants......Page 161
3.4 Introduction to Eigenvalues......Page 171
3.5 Applications of Determinants......Page 177
Project 1 Eigenvalues and Stochastic Matrices......Page 193
Project 2 The Cayley-Hamilton Theorem......Page 194
Cumulative Test for Chapters 1–3......Page 196
4.1 Vectors in R[sup(n)]......Page 198
4.2 Vector Spaces......Page 210
4.3 Subspaces of Vector Spaces......Page 217
4.4 Spanning Sets and Linear Independence......Page 226
4.5 Basis and Dimension......Page 240
4.6 Rank of a Matrix and Systems of Linear Equations......Page 251
4.7 Coordinates and Change of Basis......Page 268
4.8 Applications of Vector Spaces......Page 281
Project 1 Solutions of Linear Systems......Page 294
Project 2 Direct Sum......Page 295
5.1 Length and Dot Product in R[sup(n)]......Page 296
5.2 Inner Product Spaces......Page 311
5.3 Orthonormal Bases: Gram-Schmidt Process......Page 325
5.4 Mathematical Models and Least Squares Analysis......Page 339
5.5 Applications of Inner Product Spaces......Page 355
Project 1 The QR-Factorization......Page 375
Project 2 Orthogonal Matrices and Change of Basis......Page 376
Cumulative Test for Chapters 4 and 5......Page 378
6.1 Introduction to Linear Transformations......Page 380
6.2 The Kernel and Range of a Linear Transformation......Page 393
6.3 Matrices for Linear Transformations......Page 406
6.4 Transition Matrices and Similarity......Page 418
6.5 Applications of Linear Transformations......Page 426
Project 1 Reflections in the Plane (I)......Page 438
Project 2 Reflections in the Plane (II)......Page 439
7.1 Eigenvalues and Eigenvectors......Page 440
7.2 Diagonalization......Page 454
7.3 Symmetric Matrices and Orthogonal Diagonalization......Page 465
7.4 Applications of Eigenvalues and Eigenvectors......Page 477
Project 1 Population Growth and Dynamical Systems (I)......Page 496
Project 2 The Fibonacci Sequence......Page 497
Cumulative Test for Chapters 6 and 7......Page 498
APPENDIX: MATHEMATICAL INDUCTION AND OTHER A1 FORMS OF PROOFS......Page 500
ANSWER KEY......Page 508
INDEX......Page 558