This book is aimed at developing elementary analysis skills, familiarity and an intuitive feel for composite construction that is required by undergraduate and graduate students, and by structural engineers. It does not require a prior knowledge of advanced analysis and design techniques, and builds on simple concepts such as statics and the mechanics of materials. A topic is first introduced by a brief description, with numerous carefully-chosen examples forming an integral part of the main text. Working through the examples allows the reader to gain a full understanding of the subject, as a technique is illustrated by its application to designing new structures, or in the important area of assessing and upgrading existing structures. The techniques described for the analysis of standard structures form a basis for understanding the way composite structures work, and these techniques are applied to many non-standard forms of composite construction that are not, or rarely, covered in national standards. The book is an essential purchase for all undergraduate and postgraduate students of structural/civil engineering and architecture, as well as all practising structural and civil engineers. Covers practical applications not covered in codes, such as service ducts, splitting, upgrading existing structures and non-standard forms of composite constructionTopics are embellished by working through numerous unique and carefully-chosen examples that form an integral part of the subject materialNot orientated to specific codes, so that principles can be applied to any national design standard
Author(s): Deric Oehlers, Mark A. Bradford
Year: 2000
Language: English
Pages: 280
Front Cover......Page 1
Elementary Behaviour of Composite Steel and Concrete Structural Members......Page 4
Copyright Page......Page 5
Contents......Page 6
Preface......Page 10
Notation......Page 12
1.1 Composite structures......Page 20
1.2 Design criteria......Page 23
1.3 Material properties......Page 26
1.4 Partial shear connection......Page 31
1.5 Partial interaction......Page 35
1.6 Buckling......Page 37
1.7 References......Page 39
2.2 Shear lag......Page 40
2.3 Local buckling......Page 46
2.4 References......Page 57
3.2 Linear material properties......Page 58
3.3 Full interaction analysis......Page 59
3.4 Partial shear connection......Page 66
3.5 Method of construction......Page 67
3.6 Shear flow on connectors......Page 70
3.7 References......Page 71
4.2 Rigid plastic flexural capacity of standard composite beams......Page 72
4.3 Rigid plastic flexural capacity of encased composite beams......Page 86
4.4 Variation of flexural capacity along the length of the beam......Page 89
4.5 References......Page 92
5.1 Introduction......Page 93
5.2 Local detailing rules......Page 94
5.3 Dowel resistance to the shear flow forces......Page 96
5.4 Fracture of shear connectors due to excessive slip in simply supported beams......Page 103
5.5 References......Page 113
6.3 Shear flow forces......Page 114
6.4 Generic shear flow strengths......Page 116
6.5 Resistance of shear plane traversing depth of slab......Page 118
6.6 Resistance of shear planes that encompass connectors......Page 123
6.7 References......Page 125
7.1 Introduction......Page 126
7.2 Plastic centroid and concentrically loaded column......Page 127
7.3 General methods of analysis......Page 129
7.4 Rigid plastic analysis......Page 134
7.5 References......Page 139
8.2 Elastic columns......Page 140
8.3 End moments......Page 146
8.4 Moment capacity of slender composite columns......Page 149
8.5 References......Page 153
9.2 Outline of general analysis procedure......Page 154
9.3 Maximum flexural capacity of ducted beam......Page 156
9.4 Pure flexural capacity of ducted region......Page 158
9.5 Pure shear capacity of ducted region......Page 160
9.6 Interaction between shear and flexure......Page 169
9.7 Enhanced shear strength due to the shear resistance of the slab......Page 170
9.8 Strengthening ducted regions by plating......Page 173
9.9 Service duct near supports......Page 175
9.10 Embedment failure......Page 178
9.11 Reference......Page 180
10.2 Mechanisms of splitting......Page 181
10.3 Splitting resistances of slabs with rectangular cross.sections......Page 183
10.5 Pairs of connectors......Page 187
10.6 Groups of connectors......Page 189
10.7 Blocks of connectors......Page 190
10.8 Prisms with non-rectangular cross-sections......Page 191
10.9 References......Page 195
11.2 Hooped reinforcing bars......Page 196
11.3 Post-cracking confinement of concrete......Page 199
11.4 Post-splitting transverse forces......Page 201
11.5 References......Page 203
12.1 Introduction......Page 204
12.2 Continuous steel beams......Page 205
12.3 Continuous composite beams......Page 212
12.4 References......Page 217
13.1 Introduction......Page 218
13.2 Steel componentbehaviour......Page 219
13.3 Design models......Page 222
13.5 References......Page 227
14.2 General fatigue properties......Page 228
14.3 Applied loads on bridges......Page 233
14.4 Cyclic stress resultants......Page 237
14.5 Frictional shear flow resistance......Page 245
14.6 Generic fatigue equation......Page 250
14.7 References......Page 253
15.2 Stud shear connector fatigue material properties......Page 254
15.3 Details of composite beam......Page 256
15.4 Crack initiation approach......Page 258
15.5 Crack propagation approach......Page 264
15.6 Composite building beam......Page 271
15.7 References......Page 274
Index......Page 275