Electroslag Remelting Towards Clean Steel

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book introduces the results that the authors have achieved on the study of functional principle of electroslag remelting for production of high-quality clean steel. The dependence of oxygen, sulfur, and non-metallic inclusions on the processing parameters of electroslag remelting is assessed. The fundamentals and technologies of clean steel production by electroslag remelting have been applied in the round to discuss oxygen, sulfur, and non-metallic inclusions evolution and control. A general concluding remark and a perspective for future work are present. The book is likely to be of interest to university teachers, researchers, R&D engineers, and graduate students in material processing and pyrometallurgy who wish to explore innovative technologies that lead to more energy-efficient and environmentally sustainable clean steel production.

Author(s): Chengbin Shi, Jing Li, Shufeng Yang
Publisher: Springer-MIP
Year: 2023

Language: English
Pages: 252
City: Beijing

Preface
Acknowledgments
Contents
1 Introduction to Electroslag Remelting
References
2 Clean Steel Production by Electroslag Remelting
2.1 Cleanliness Target
2.2 Oxygen and Oxide Inclusions
2.3 Sulfur and Desulfurization
2.4 Hydrogen
2.5 Nitrogen and Phosphorus
2.6 Summary
References
3 Deoxidation of ESR and Its Correlation with Oxide Inclusions
3.1 Background
3.2 Oxygen Transfer During ESR Process
3.3 Thermodynamic Considerations on Deoxidation of ESR
3.4 Deoxidation Kinetics of ESR
3.4.1 Development of the Kinetic Model
3.4.2 Kinetic Model Parameters
3.4.3 Application of the Developed Kinetic Model to ESR Practice
3.5 Evaluation of the Dependence of Oxygen on the Processing Parameters of ESR
3.5.1 Initial Oxygen Content of Steel Electrode
3.5.2 Oxide Inclusions in Steel Electrode
3.5.3 Remelting Atmosphere
3.5.4 Deoxidation Schemes of ESR
3.5.5 Role of Slag Compositions
3.5.6 Reoxidation of Liquid Steel
3.5.7 Melting Rate and Filling Ratio of ESR
3.6 Summary
References
4 Reoxidation of Liquid Steel During ESR and Its Effect on Oxide Inclusions
4.1 Background
4.2 Experimental Work
4.3 Oxygen Content of the Steel
4.4 Inclusions in the Consumable Steel Electrode
4.5 Inclusions in the Remelted Ingots
4.6 Transient Inclusions in the Liquid Metal Pool During ESR Refining
4.7 Evolution Mechanism of Inclusions During ESR Refining
4.8 Other Cases of Inclusion Evolution During ESR
4.9 Summary
References
5 Desulfurization in Electroslag Remelting
5.1 Background
5.2 Desulfurization Basis of ESR
5.3 Dependence of Desulfurization on the Processing Parameters of ESR
5.3.1 Initial Sulfur Content of Consumable Electrode
5.3.2 Remelting Atmosphere
5.3.3 Slag Composition
5.3.4 Deoxidation Schemes of ESR
5.3.5 Melting Rate of ESR
5.3.6 Electrical Parameters of ESR
5.4 Desulfurization Associated with Sulfide Inclusion Evolution During ESR
5.5 ESR for Sulfur-Bearing Steel Production
5.6 Summary
References
6 Sulfide and Nitride Inclusion Evolution During ESR
6.1 Sulfide Inclusions
6.2 Sulfide in Oxide–Sulfide Complex Inclusions
6.2.1 From Original Attached State to Patch-Type and Shell-Type Sulfide
6.2.2 From Original Patch-Type to Shell-Type Sulfide
6.3 Nitride Inclusions
6.4 Summary
References
7 Evolution of Original Oxide Inclusions During ESR
7.1 Sites of Oxide Inclusion Removal During ESR
7.2 Al2O3 and MgO·Al2O3 Inclusions
7.3 Calcium Aluminate Inclusions
7.4 Manganese Silicate Inclusions
7.5 Role of Processing Parameters of ESR on Inclusions
7.5.1 Deoxidation Schemes of ESR
7.5.2 Slag Composition
7.5.3 Melting Rate of ESR
7.5.4 Electrical Parameters of ESR
7.6 Newly-Formed Inclusions in Remelted Ingot
7.7 Illustration of Inclusion Removal and Fresh Inclusion Generation During ESR
7.8 Summary
References
8 Evolution of Oxide Inclusions in Si–Mn-Killed Steel During ESR
8.1 Background
8.2 P-ESR Trials of Si–Mn Deoxidized Steel
8.3 Inclusions in Consumable Steel Electrode
8.4 Inclusions in the Liquid Metal Pool and Remelted Ingots
8.5 Evolution Mechanism of Oxide Inclusions During Protective Atmosphere Electroslag Remelting
8.6 Summary
References
9 Modification of Alumina and MgO·Al2O3 Inclusions by Calcium Treatment During ESR
9.1 Background
9.2 Modification of MgO·Al2O3 Spinel Inclusions in Steel During P-ESR
9.2.1 P-ESR Procedure and Inclusion Characterization
9.2.2 Characteristics of Non-metallic Inclusions
9.2.3 Evolution and Modification of MgO·Al2O3 Spinel Inclusions in the P-ESR Process
9.2.4 MgO·Al2O3 Spinel Inclusion Modification in Industrial P-ESR Practice
9.3 Simultaneous Modification of Alumina and MgO·Al2O3 Inclusions During P-ESR
9.3.1 Inclusions in the Consumable Steel Electrode
9.3.2 Inclusions and Primary Carbides in Remelted Ingots
9.3.3 Composition Distribution of Oxide Inclusions in Remelted Ingots
9.3.4 Transient Inclusions in Liquid Metal Pool During P-ESR Refining
9.3.5 Proposed Mechanism for Modification of Inclusions by Calcium During P-ESR Process
9.4 Evaluation of Al2O3 and MgO·Al2O3 Inclusion Modification Prior to ESR
9.5 Summary
References
10 Role of Calcium Modification of Oxide Inclusions During ESR on Primary Carbides
10.1 Background
10.2 Effect of Oxide Inclusions Modification on Primary Carbides in Tool Steel
10.2.1 Precipitate Formation in the Steel
10.2.2 Microstructure of As-Cast Remelted Ingot
10.2.3 Primary Carbides in As-Cast ESR Ingots
10.2.4 Microstructure and Toughness of Annealed Steel
10.3 MgO·Al2O3 Spinel Inclusions Modification on Primary Carbonitrides in Nickel-Base Superalloy
10.3.1 Two-Dimensional Observation of Inclusions and Primary Carbonitrides
10.3.2 Three-Dimensional Observation of Inclusions and Primary Carbonitrides
10.3.3 Oxide Inclusions Evolution
10.3.4 Effect of Oxide Inclusions Modification on Primary Carbonitrides
10.4 Summary
References