Electronic Control of Switched Reluctance Machines

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Switched reluctance motors have steadily increased in commercial importance since their introduction in the early 1980's, while their technology - especially of their electronic control - has made great progress. Their unique characteristics introduce a delicate balance, in which the copper and iron are diminished in quantity, complexity and cost, in favour of a greater reliance on sophistication in the controller. Thus mastery of the control is the key challenge in the application of these machines. This book is intended for engineer's in industry and in the large research community in electrical machines and drives. It introduces the techniques for controlling switched reluctance machines, starting from first principles and building up to the most advanced forms of sensorless control. It covers the recent advances in electronic control and includes aspects of motion control, automation, acoustic noise reduction and energy efficiency. covers the recent changes in control technologyincludes up-to-date equipment and methodscontains applications and case studies

Author(s): Timothy John Eastham Miller
Series: Newnes Power Engineering Series'',
Publisher: Newnes
Year: 2001

Language: English
Commentary: pages I - X incl. TOC are missing
Pages: 278

Cover
......Page 1
Preface......Page 2
Acknowledgements......Page 4
Abbreviations......Page 6
1.1.3 Relationship with VR stepper motors......Page 7
1.1.4 Terminology......Page 8
1.1.5 General characteristics......Page 9
1.2 The purpose and structure of this book
......Page 10
2.1 Introduction
......Page 12
2.2.1 The electromagnetic engine: an early reluctance motor......Page 13
2.2.3 The phonic wheel......Page 19
2.2.5 The synchronous reluctance motor......Page 21
2.2.6 The Admiralty 'M' type stepper motor......Page 24
2.3 Early electronic switching in the 1930s using mercury arc rectifiers and thyratrons
......Page 26
2.4 The arraval of the thyristor in the early 1960s: development of the swinging-field machine
......Page 28
2.5.2 Seminal work in the modern era......Page 35
2.5.3 The present status of switched reluctance technology......Page 37
2.5.4 Patent activity......Page 38
2.6 Summary
......Page 39
3.1.2 Variation of inductance with rotor position......Page 40
3.2 Linear analysis of the voltage equation and torque production
......Page 43
3.3 Nonlinear analysis of torque production
......Page 49
3.4 Continuous torque production
......Page 53
3.4.1 Stator/rotor pole numbers......Page 55
3.5.1 Energy ratio and converter volt-ampere requirement......Page 58
3.5.2 Estimation of the commutation angle......Page 59
3.5.3 Basic torque/speed characteristic......Page 60
3.5.4 Analysis of the energy-conversion loop......Page 61
3.6.1 Calculation......Page 63
3.7.1 PC-SRD method......Page 64
3.7.2 A method that uses co-energy and avoids integration......Page 66
4.1 Noise in the switched reluctance machine
......Page 68
4.2 Noise-generation mechanismus and characterization
......Page 69
4.2.1 Noise characterization......Page 70
4.2.2 Testing......Page 71
4.3.1 The 39 steps......Page 72
4.3.2 Commutation control......Page 74
4.4 The stagger-tooth motor
......Page 75
4.5 Summary
......Page 79
5.1 Introduction
......Page 80
5.2.1 Low-speed motoring......Page 82
5.2.3 Operation at much higher speed......Page 84
5.2.6 Operating regions- torque/speed characteristic......Page 86
5.2.7 Multiple-phase operation......Page 88
5.3.1 Soft chopping, hard chopping, and conduction modes......Page 89
5.3.2 Single-pulse control at high speed......Page 90
5.3.3 Current regulation and voltage-PWM at low and mediumspeeds......Page 92
5.3.4 Additional current regulation techniques......Page 95
5.3.5 Mathematical description of chopping......Page 96
5.4.1 Motor control......Page 98
5.4.2 Generator control......Page 100
5.4.3 Optimization of the control variables......Page 101
5.5 Summary
......Page 102
6.1 Introduction
......Page 104
6.2 Previous work and review
......Page 105
6.3.1 Maximum torque per ampere control......Page 107
6.3.2 Maximum torque per flux control......Page 110
6.3.4 Operating limits imposed by controller voltage......Page 112
6.3.5 Simulated torque/speed characteristics......Page 114
6.4.1 Torque ripple assessment......Page 119
6.4.2 Alternative method for torque ripple assessment......Page 121
6.4.3 Torque linearity......Page 124
6.4.4 Measured torque/speed capability......Page 125
6.4.5 Some comments on the torque control scheme......Page 126
6.5 Application of ITC in servo-system
......Page 127
6.5.1 Inherent limits to performance imposed by torquecontrol......Page 128
6.5.2 Dynamic test-rig......Page 130
6.5.3 Design of velocity control loop......Page 131
6.5.4 Design of position control loop......Page 133
6.5.5 Profiled motion control operation......Page 135
6.5.6 Variable-speed measurements......Page 137
6.6 Discussion and conclusion......Page 138
7.1 Introduction
......Page 139
7.2 Classification of sensorless methods
......Page 140
7.3 Open-loop methods
......Page 144
7.4.1 Chopping waveform......Page 145
7.4.2 Regenerative current......Page 147
7.4.3 Flux-linkage
......Page 148
7.4.4 State observers......Page 152
7.4.6 Current waveform......Page 154
7.5.1 Active probing......Page 157
7.5.2 Modulated signal injection......Page 160
7.5.3 Regenerative current......Page 161
7.5.4 Mutually induced systems......Page 162
7.6 Current gradient sensorless method
......Page 163
7.7 Sensorless method based on flux-linkage and current observers
......Page 167
7.8 Summary
......Page 174
8.1 General approach......Page 177
8.1.1 Black box approach......Page 178
8.1.2 Previous approaches......Page 179
8.1.3 The black box approach: problem definition......Page 181
8.2 The zero phase or anti-causal filter
......Page 182
8.2.1 Anti-causal filters and torque ripple data......Page 185
8.2.2 Compensated miscellaneous dynamics......Page 186
8.3 Spatal frequency-domain analysis
......Page 187
8.3.1 An example of spatial frequency-domain analysis......Page 188
8.3.2 Selection of the anti-causal filter frequency......Page 190
8.4.1 Two-dimensional interpolation and table storage......Page 191
8.5 Torque ripple reduction algorithm
......Page 192
8.6 Experimental results at a single torque level
......Page 193
8.7 Ripple reduction at all torque levels
......Page 195
8.8 Acoustic noise
......Page 196
8.8.1 Analysis of the microphone model......Page 199
8.8.2 Analysis of Wu and Pollock's deadbeat control......Page 202
8.8.3 Current control loop topologies......Page 204
8.9 Summary
......Page 206
9.1 Introduction
......Page 207
9.2 Implementation technologies
......Page 208
9.3 Functionality options......Page 210
9.4.1 Low-cost control chip based on analogue-I-discretedigital integrated circuits......Page 212
9.4.2 Microcontroller-based variable-speed drive......Page 215
9.4.3 DSP-based servo drive......Page 221
9.4.5 Summary......Page 223
9.5.1 Measurement of magnetization curves......Page 225
9.5.2 Dynamometer tests of the complete drive system......Page 227
9.6 Summary
......Page 232
10.1 Principle
......Page 233
10.2 Review of switched reluctance generator control......Page 238
10.3 Control method for a higher energy conversion effectiveness
......Page 241
10.4 PWM control
......Page 243
10.5 Design of a controller for the switched reluctance generator......Page 245
10.6 Implementation of the controller......Page 246
10.7 Fault-tolerant operation
......Page 247
10.7.1 The single-phase generator......Page 248
10.7.2 Fault-tolerant converter for the single-phase generator......Page 249
10.7.3 Open-coil fault analysis......Page 252
10.7.4 2-D finite-element analysis and static torquemeasurement......Page 254
10.7.5 Coil short-circuit fault......Page 255
10.7.6 Disconnection of faulty coils......Page 256
Bibliography......Page 258
Index......Page 273