Electronic circuit analysis and design

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Part I Semiconductor Devices and Basic Applications 1 --
Chapter 1 Semiconductor Materials and Diodes 3 --
1.1 Semiconductor Materials and Properties 4 --
1.1.1 Intrinsic Semiconductors 4 --
1.1.2 Extrinsic Semiconductors 7 --
1.1.3 Drift and Diffusion Currents 9 --
1.1.4 Excess Carriers 11 --
1.2 The pn Junction 12 --
1.2.1 The Equilibrium pn Junction 12 --
1.2.2 Reverse-Biased pn Junction 14 --
1.2.3 Forward-Biased pn Junction 16 --
1.2.4 Ideal Current-Voltage Relationship 17 --
1.2.5 pn Junction Diode 18 --
1.3 Diode Circuits: DC Analysis and Models 23 --
1.3.1 Iteration and Graphical Analysis Techniques 24 --
1.3.2 Piecewise Linear Model 27 --
1.3.3 Computer Simulation and Analysis 30 --
1.3.4 Summary of Diode Models 31 --
1.4 Diode Circuits: AC Equivalent Circuit 31 --
1.4.1 Sinusoidal Analysis 31 --
1.4.2 Small-Signal Equivalent Circuit 35 --
1.5 Other Diode Types 35 --
1.5.1 Solar Cell 35 --
1.5.2 Photodiode 36 --
1.5.3 Light-Emitting Diode 36 --
1.5.4 Schottky Barrier Diode 37 --
1.5.5 Zener Diode 39 --
Chapter 2 Diode Circuits 49 --
2.1 Rectifier Circuits 50 --
2.1.1 Half-Wave Rectification 50 --
Problem-Solving Technique: Diode Circuits 51 --
2.1.2 Full-Wave Rectification 53 --
2.1.3 Filters, Ripple Voltage, and Diode Current 56 --
2.1.4 Voltage Doubler Circuit 63 --
2.2 Zener Diode Circuits 64 --
2.2.1 Ideal Voltage Reference Circuit 64 --
2.2.2 Zener Resistance and Percent Regulation 67 --
2.3 Clipper and Clamper Circuits 68 --
2.3.1 Clippers 68 --
2.3.2 Clampers 72 --
2.4 Multiple-Diode Circuits 75 --
2.4.1 Example Diode Circuits 75 --
Problem-Solving Technique: Multiple Diode Circuits 79 --
2.4.2 Diode Logic Circuits 80 --
2.5 Photodiode and LED Circuits 82 --
2.5.1 Photodiode Circuit 82 --
2.5.2 LED Circuit 83 --
Chapter 3 The Bipolar Junction Transistor 97 --
3.1 Basic Bipolar Junction Transistor 97 --
3.1.1 Transistor Structures 98 --
3.1.2 npn Transistor: Forward-Active Mode Operation 99 --
3.1.3 pnp Transistor: Forward-Active Mode Operation 104 --
3.1.4 Circuit Symbols and Conventions 105 --
3.1.5 Current-Voltage Characteristics 107 --
3.1.6 Nonideal Transistor Leakage Currents and Breakdown Voltage 110 --
3.2 DC Analysis of Transistor Circuits 113 --
3.2.1 Common-Emitter Circuit 114 --
3.2.2 Load Line and Modes of Operation 117 --
Problem-Solving Technique: Bipolar DC Analysis 120 --
3.2.3 Common Bipolar Circuits: DC Analysis 121 --
3.3 Basic Transistor Applications 131 --
3.3.1 Switch 131 --
3.3.2 Digital Logic 133 --
3.3.3 Amplifier 134 --
3.4 Bipolar Transistor Biasing 138 --
3.4.1 Single Base Resistor Biasing 138 --
3.4.2 Voltage Divider Biasing and Bias Stability 140 --
3.4.3 Integrated Circuit Biasing 145 --
3.5 Multistage Circuits 147 --
Chapter 4 Basic BJT Amplifiers 163 --
4.1 Analog Signals and Linear Amplifiers 163 --
4.2 The Bipolar Linear Amplifier 165 --
4.2.1 Graphical Analysis and AC Equivalent Circuit 166 --
4.2.2 Small-Signal Hybrid-[pi] Equivalent Circuit of the Bipolar Transistor 170 --
Problem-Solving Technique: Bipolar AC Analysis 175 --
4.2.3 Hybrid-[pi] Equivalent Circuit, Including the Early Effect 176 --
4.2.4 Expanded Hybrid-[pi] Equivalent Circuit 180 --
4.2.5 Other Small-Signal Parameters and Equivalent Circuits 180 --
4.3 Basic Transistor Amplifier Configurations 185 --
4.4 Common-Emitter Amplifiers 189 --
4.4.1 Basic Common-Emitter Amplifier Circuit 190 --
4.4.2 Circuit with Emitter Resistor 192 --
4.4.3 Circuit with Emitter-Bypass Capacitor 196 --
4.4.4 Advanced Common-Emitter Amplifier Concepts 199 --
4.5 AC Load Line Analysis 200 --
4.5.1 AC Load Line 200 --
4.5.2 Maximum Symmetrical Swing 203 --
Problem-Solving Technique: Maximum Symmetrical Swing 204 --
4.6 Common-Collector (Emitter-Follower) Amplifier 205 --
4.6.1 Small-Signal Voltage Gain 205 --
4.6.2 Input and Output Impedance 207 --
4.6.3 Small-Signal Current Gain 209 --
4.7 Common-Base Amplifier 214 --
4.7.1 Small-Signal Voltage and Current Gains 214 --
4.7.2 Input and Output Impedance 216 --
4.8 The Three Basic Amplifiers: Summary and Comparison 218 --
4.9 Multistage Amplifiers 219 --
4.9.1 Multistage Analysis: Cascade Configuration 219 --
4.9.2 Cascode Configuration 223 --
4.10 Power Considerations 226 --
Chapter 5 The Field-Effect Transistor 243 --
5.1 MOS Field-Effect Transistor 243 --
5.1.1 Two-Terminal MOS Structure 244 --
5.1.2 n-Channel Enhancement-Mode MOSFET 246 --
5.1.3 Ideal MOSFET Current-Voltage Characteristics 248 --
5.1.4 Circuit Symbols and Conventions 253 --
5.1.5 Additional MOSFET Structures and Circuit Symbols 253 --
5.1.6 Summary of Transistor Operation 258 --
5.1.7 Nonideal Current-Voltage Characteristics 259 --
5.2 MOSFET DC Circuit Analysis 262 --
5.2.1 Common-Source Circuit 263 --
5.2.2 Load Line and Modes of Operation 267 --
Problem-Solving Technique: MOSFET DC Analysis 268 --
5.2.3 Common MOSFET Configurations: DC Analysis 269 --
5.2.4 Constant-Current Source Biasing 281 --
5.3 Basic MOSFET Applications: Switch, Digital Logic Gate, and Amplifier 283 --
5.3.1 NMOS Inverter 283 --
5.3.2 Digital Logic Gate 285 --
5.3.3 MOSFET Small-Signal Amplifier 287 --
5.4 Junction Field-Effect Transistor 287 --
5.4.1 pn JFET and MESFET Operation 288 --
5.4.2 Current-Voltage Characteristics 292 --
5.4.3 Common JFET Configurations: DC Analysis 295 --
Chapter 6 Basic FET Amplifiers 313 --
6.1 The MOSFET Amplifier 313 --
6.1.1 Graphical Analysis, Load Lines, and Small-Signal Parameters 314 --
6.1.2 Small-Signal Equivalent Circuit 318 --
Problem-Solving Technique: MOSFET AC Analysis 320 --
6.1.3 Modeling the Body Effect 322 --
6.2 Basic Transistor Amplifier Configurations 323 --
6.3 The Common-Source Amplifier 324 --
6.3.1 A Basic Common-Source Configuration 324 --
6.3.2 Common-Source Amplifier with Source Resistor 329 --
6.3.3 Common-Source Circuit with Source Bypass Capacitor 331 --
6.4 The Source-Follower Amplifier 334 --
6.4.1 Small-Signal Voltage Gain 334 --
6.4.2 Input and Output Impedance 339 --
6.5 The Common-Gate Configuration 341 --
6.5.1 Small-Signal Voltage and Current Gains 341 --
6.5.2 Input and Output Impedance 343 --
6.6 The Three Basic Amplifier Configurations: Summary and Comparison 345 --
6.7 Single-Stage Integrated Circuit MOSFET Amplifiers 345 --
6.7.1 NMOS Amplifier with Enhancement Load 345 --
6.7.2 NMOS Amplifier with Depletion Load 350 --
6.7.3 NMOS Amplifier with PMOS Load 353 --
6.8 Multistage Amplifiers 355 --
6.8.1 DC Analysis 356 --
6.8.2 Small-Signal Analysis 360 --
6.9 Basic JFET Amplifiers 362 --
6.9.1 Small-Signal Equivalent Circuit 362 --
6.9.2 Small-Signal Analysis 364 --
Chapter 7 Frequency Response 383 --
7.1 Amplifier Frequency Response 384 --
7.1.1 Equivalent Circuits 384 --
7.1.2 Frequency Response Analysis 385 --
7.2 System Transfer Functions 386 --
7.2.1 s-Domain Analysis 386 --
7.2.2 First-Order Functions 388 --
7.2.3 Bode Plots 388 --
7.2.4 Short-Circuit and Open-Circuit Time Constants 394 --
7.3 Frequency Response: Transistor Amplifiers with Circuit Capacitors 398 --
7.3.1 Coupling Capacitor Effects 398 --
Problem-Solving Technique: Bode Plot of Gain Magnitude 404 --
7.3.2 Load Capacitor Effects 405 --
7.3.3 Coupling and Load Capacitors 407 --
7.3.4 Bypass Capacitor Effects 410 --
7.3.5 Combined Effects: Coupling and Bypass Capacitors 414 --
7.4 Frequency Response: Bipolar Transistor 416 --
7.4.1 Expanded Hybrid-[pi] Equivalent Circuit 416 --
7.4.2 Short-Circuit Current Gain 418 --
7.4.3 Cutoff Frequency 420 --
7.4.4 Miller Effect and Miller Capacitance 422 --
7.5 Frequency Response: The FET 426 --
7.5.1 High-Frequency Equivalent Circuit 426 --
7.5.2 Unity-Gain Bandwidth 428 --
7.5.3 Miller Effect and Miller Capacitance 431 --
7.6 High-Frequency Response of Transistor Circuits 433 --
7.6.1 Common-Emitter and Common-Source Circuits 433 --
7.6.2 Common-Base, Common-Gate, and Cascode Circuits 436 --
7.6.3 Emitter- and Source-Follower Circuits 444 --
7.6.4 High-Frequency Amplifier Design 448 --
Chapter 8 Output Stages and Power Amplifiers 469 --
8.1 Power Amplifiers 469 --
8.2 Power Transistors 470 --
8.2.1 Power BJTs 470 --
8.2.2 Power MOSFETs 474 --
8.2.3 Heat Sinks 477 --
8.3 Classes of Amplifiers 480 --
8.3.1 Class-A Operation 481 --
8.3.2 Class-B Operation 484 --
8.3.3 Class-AB Operation 489 --
8.3.4 Class-C Operation 493 --
8.4 Class-A Power Amplifiers 494 --
8.4.1 Inductively Coupled Amplifier 494 --
8.4.2 Transformer-Coupled Common-Emitter Amplifier 495 --
8.4.3 Transformer-Coupled Emitter-Follower Amplifier 497 --
8.5 Class-AB Push-Pull Complementary Output Stages 499 --
8.5.1 Class-AB Output Stage with Diode Biasing 499 --
8.5.2 Class-AB Biasing Using the V[subscript BE] Multiplier 501 --
8.5.3 Class-AB Output Stage with Input Buffer Transistors 504 --
8.5.4 Class-AB Output Stage Utilizing the Darlington Configuration 507 --
Part II Analog Electronics 519 --
Chapter 9 The Ideal Operational Amplifier 521 --
9.1 The Operational Amplifier 521 --
9.1.1 Ideal Parameters 522 --
9.1.2 Development of the Ideal Parameters 523 --
9.1.3 Analysis Method 525 --
9.1.4 PSpice Modeling 526 --
9.2 Inverting Amplifier 526 --
9.2.1 Basic Amplifier 527 --
Problem-Solving Technique: Ideal Op-Amp Circuits 529 --
9.2.2 Amplifier with a T-Network 530 --
9.2.3 Effect of Finite Gain 532 --
9.3 Summing Amplifier 534 --
9.4 Noninverting Amplifier 536 --
9.4.1 Basic Amplifier 536 --
9.4.2 Voltage Follower 537

Author(s): Donald A. Neamen.
Series: McGraw-Hill series in electrical and computer engineering., Electronics and VLSI circuits.
Publisher: McGraw-Hill
Year: 2001.

Language: English
Pages: 1274
City: Boston