Requiring knowledge of the chemistry and physics of materials, this study relates the complete set of strength characteristics of constituent atoms to their electronic structures. The book uses classical and quantum mechanics (since both are needed to describe these properties) and begins with short reviews of each area. After the reviews, the three major branches of the strength of materials are divided into the following sections: the elastic stiffnesses; the plastic responses; and the nature of fracture.
Author(s): John J. Gilman
Publisher: Cambridge University Press
Year: 2003
Language: English
Pages: 292
Tags: Физика;Физика твердого тела;Физика металлов;
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
Preface......Page 11
Section I Introduction......Page 13
1 Nature of elastic stiffness......Page 17
2 Generalized stress......Page 21
2.1 Specification of a plane......Page 22
2.2 Resolution of an area element......Page 23
2.4 Definition of the local state of stress......Page 24
2.5 Principal stresses......Page 26
References......Page 27
3 Generalized strain......Page 28
Reference......Page 31
4 Elastic coefficients......Page 32
4.1 Cubic crystals......Page 35
4.3 Contracted notation......Page 36
4.4 Young’s modulus......Page 37
4.5 Cauchy’s relations......Page 39
References......Page 42
5 Properties of electrons......Page 43
References......Page 48
6 Quantum states......Page 49
6.1 Wave-like fields......Page 50
6.2 Particle on a ring......Page 52
6.3 Particle on a sphere......Page 54
6.4 The most simple atom (hydrogen)......Page 57
6.5 Electron spin......Page 61
6.6 The Pauli Principle......Page 62
References......Page 63
7 Periodic patterns of electrons......Page 64
8 Heisenberg’s Principle......Page 68
8.1 Heisenberg hydrogen atom......Page 72
References......Page 74
9 Cohesion of atoms......Page 75
9.1 Limiting bond types......Page 78
9.2 Covalent bonds......Page 79
9.3 The importance of symmetry factors......Page 81
9.5 Metallic bonding......Page 85
9.6 London forces......Page 86
References......Page 87
10.1.1 Hydrogen molecular ion (H2+)......Page 89
10.1.2 Hydrogen molecule (H2)......Page 91
10.2 Time dependent theory (resonance)......Page 92
10.2.1 Weak resonance (London forces)......Page 93
10.2.3 Hydrogen molecular ion (H2+)......Page 94
10.2.5 Morse potential......Page 97
10.3.1 Hybridization......Page 99
10.3.2 Chains......Page 101
10.3.3 Diatomic chains......Page 102
10.3.4 Polyatomic chains......Page 104
References......Page 108
11.1 London forces......Page 109
11.2 Polarizability......Page 112
11.5 Dipole–dipole crystals......Page 115
11.6 Hydrogen bonds......Page 118
References......Page 120
12 Bulk modulus......Page 122
12.1 Bulk stiffnesses of the elements (chemical factors)......Page 123
12.1.1 Effect of pressure on the compressibilities of the elements......Page 124
12.3 Simple metals......Page 125
12.4 Alkali metals......Page 127
12.5 Transition metals......Page 129
12.5.1 Magnetism and transition metal stiffness......Page 132
12.6 Theory of the bulk modulus (simple metals)......Page 133
12.6.1 Heisenberg’s Principle applied to simple metals......Page 134
12.6.2 Chemical hardness......Page 135
12.6.3 Plasmons......Page 136
12.6.4 Schrödinger’s equation......Page 138
12.8 Hard metals (metalloid–metal interstitial compounds)......Page 140
12.10 Covalent crystals......Page 141
12.11 Ionic crystals......Page 145
12.13 Chalcogenides (oxygen column of the Periodic Table)......Page 149
12.14 Silicates......Page 150
12.15 Molecular crystals......Page 151
References......Page 152
13.1 General comments......Page 154
13.2 Shear stiffnesses......Page 155
13.3 The Cauchy relations......Page 158
13.4.1 Effective atom method......Page 159
13.4.2 Dipole polarizability......Page 160
13.4.3 Quadrupole polarizability......Page 161
13.5 Failure of radial potentials......Page 162
13.6 Alkali metals......Page 165
13.7 Compounds......Page 167
13.7.1 Alloys and intermetallic compounds......Page 168
13.7.2 “Hard metals” (metal–metalloid compounds)......Page 169
13.8.1 Alkali halides......Page 171
13.8.2 Alkaline earth fluorides and oxides......Page 173
13.9 Covalent crystals......Page 174
13.11 Quasicrystals......Page 181
13.12 Polymers......Page 182
13.13 Atomic vibrations......Page 183
References......Page 184
14.1 Introduction......Page 186
14.3 Entropic stiffness......Page 187
14.4 Rubbery elasticity......Page 188
References......Page 190
15 Universality and unification......Page 191
15.1 Bulk modulus......Page 192
15.3 Plastic resistance (physical hardness)......Page 193
15.5 Shear-induced chemical reactions......Page 194
References......Page 195
16 Macroscopic plastic deformation......Page 197
16.1 Distinction between elastic and plastic deformations......Page 199
16.2 Plastic equation of state......Page 200
16.3 Modes of plastic deformation......Page 201
References......Page 204
17.1 Plasticity as linear transport......Page 205
17.2 Multiplication of dislocations......Page 207
17.3 Some kinematics......Page 210
References......Page 211
18.2 Mobilities, general......Page 213
18.3 Dislocations with low mobilities......Page 216
18.4 Steadiness of motion......Page 217
18.5.1 Extrinsic resistance......Page 218
18.5.2 Intrinsic resistance......Page 219
18.5.3 Simple metals......Page 220
18.5.4 Anisotropic metals......Page 221
18.5.5 Transition metals......Page 223
18.5.6 Ionic compounds......Page 225
18.5.7 Carbides (and other “hard” metals)......Page 228
18.5.7.1 Silicon carbide......Page 230
18.5.7.2 Titanium carbide......Page 232
18.5.7.3 Tungsten carbide......Page 235
18.6 Chemical theory of dislocation mobility......Page 236
18.6.1 Group V elements......Page 237
18.6.2 Temperature dependence......Page 243
18.7 Molecular solids......Page 246
18.8 Alloys and intermetallic compounds......Page 248
18.9 Oxide crystals (including silicates)......Page 250
18.10 Glasses......Page 251
18.11.1 Dynamic interactions (traffic interferences)......Page 252
18.12 Activation of motion......Page 253
18.12.1 Temperature activation......Page 254
References......Page 255
19.1 Elements of cracking......Page 259
19.2 Fracture surface energies......Page 261
19.3 Inelastic effects......Page 263
19.4 Environmental factors......Page 264
References......Page 265
20.1 Introduction......Page 266
20.2 Surface states......Page 267
20.3.2 Covalent crystals......Page 269
20.4 Surface energy from the Heisenberg Principle......Page 270
20.5 Surface energy from elastic stiffness......Page 272
20.6 Surface energy from plasmon theory......Page 273
20.8 Long-range attraction of cleavage faces......Page 274
20.9 Importance of polarizability......Page 277
References......Page 278
21.2 Thermal activation......Page 279
21.3 Fracture via tunneling......Page 281
21.4 Zener tunneling......Page 283
21.5 Conformance of experimental data with the tunneling equation......Page 284
References......Page 288
Index......Page 289