The science of energy harvesting materials is experiencing phenomenal growth and attracting huge interest. Exploiting recently acquired insights into the fundamental mechanisms and principles of photosynthesis, it is now possible to forge entirely new and distinctive molecular materials and devise artificial photosystems and applications far remote from conventional solar cell technology. In this comprehensive treatment of energy harvesting, a team of internationally acclaimed scientists at the forefront of the subject paint a state-of-the-art picture of modern energy harvesting materials science. Covering all aspects of the subject, ranging from natural plant and bacterial photosystems, through their biologically inspired synthetic analogs, to other photoactive molecular materials such as dendrimers, the book also establishes the theory and underlying principles across the full range of light harvesting systems. With an authoritative, comprehensive and well-referenced content, it will appeal to all students, researchers and technologists interested or involved in solar energy, photobiology and photoactive materials science.
Author(s): Lim Hock, Serguei Matitsine, Gan Yeow Beng
Year: 2005
Language: English
Pages: 276
CONTENTS......Page 10
Session R1 Chair: A.N. Lagarkov......Page 16
R-1-IN 1 Metamaterials: From Averaging to Detailed Electrodynamic Description A.N. Lugarkov and V.N. Kissel......Page 18
References......Page 24
Introduction......Page 25
Field energy densitv in wire media......Page 26
Field energy density in artificial Lorentzian dielectrics......Page 28
Field energy density in dense arrays of split rings......Page 29
References......Page 31
1. Introduction......Page 33
2. Review of existing work on microhanofabricated EM3......Page 34
3.1 Fabrication techniques......Page 35
3.2 3 D concepts......Page 36
5. Conclusions......Page 38
References......Page 39
Session R2 Chair: J.A. Kong......Page 42
R-2-IN4 Superlens as Matching Device V.G. Veselago......Page 44
References......Page 47
2 Ring characterization......Page 48
3 Theory of LHM......Page 49
4 Experimental measurements of the S-ring design......Page 51
5 Conclusion......Page 53
References......Page 54
1. The Skrotskii example of total internal reflection......Page 56
2. Photonic crystal of negative contrast......Page 57
References......Page 58
Mathematics......Page 59
Underlying physics......Page 61
References......Page 62
R-2-OR3 Superprism Effect in 1D Photonic Crystal A.M. Merzlikin and A.P. Vinogradov......Page 63
References......Page 64
1. Introduction......Page 66
3. Experiment......Page 67
References......Page 69
Design & Simulation......Page 70
FTIR Measurements......Page 72
References......Page 73
2. Theoretical results......Page 74
3. Experimental results......Page 75
References......Page 76
Session R3 Chair: S.A. Nikitov......Page 78
1. Introduction......Page 80
2. Theoretical part......Page 81
3. Experimental results......Page 82
References......Page 87
Abstract......Page 88
2 Acher’s law for composites......Page 89
3 The effect of eddy currents......Page 91
References......Page 92
2 Experiment......Page 93
3 Results and discussion......Page 94
References......Page 96
Abstract......Page 97
R-3-OR10 Giant Photonic Hall Effect in Magneto-Photonic Crystals A.M. Merzlikin, A. P. Vinogradov *, M. Inoue and A. B. Granovsky......Page 98
References......Page 101
Session R4 Chair: AS. Bhalla......Page 102
Abstract......Page 104
Introduction......Page 105
Processing and microstructure of barium titanate based thick films......Page 106
Dielectric behaviors of BST thick films......Page 108
Conclusion......Page 110
References......Page 111
I. Introduction......Page 112
III. Optical Applications of STFs......Page 114
References......Page 116
1. Introduction......Page 118
3. Results and discussion......Page 119
References......Page 121
I. INTRODUCTION......Page 122
III. RESULTS AND DISCUSSION......Page 123
Acknowledgments......Page 125
Abstract......Page 126
Session R5 Chair: O. Acher......Page 128
II. Ferromagnetic-based composite materials......Page 130
III. New opportunities in permeability response engineering: the metamaterial approach......Page 132
IV. Sum rules as guidelines for microwave magnetic material design......Page 134
References......Page 135
Introduction......Page 136
Results......Page 137
Discussion......Page 138
References......Page 139
II. Experiment and Results......Page 140
III. Discussions......Page 141
References......Page 143
1. Introduction......Page 144
3. Results and Discussion......Page 145
References......Page 147
Experiment......Page 148
Results and discussion......Page 149
References......Page 150
2. Experiment......Page 151
3. Results and discussions......Page 152
References......Page 154
Results & Discussion......Page 155
References......Page 158
Session R6 (Poster Session)......Page 160
Experimental Procedure......Page 162
Results and Discussion......Page 163
References......Page 165
Abstract......Page 166
Abstract......Page 167
Introduction......Page 168
1. Propagation Perpendicular to Ho......Page 169
References......Page 171
Abstract......Page 172
Abstract......Page 173
References......Page 176
R-6-PO7 Local Structural Distortions and Mn Random Distributions in (Ga, Mn)As: A First-Principles Study X.S. Chen*. X.G. Guo and W. Lu......Page 177
Abstract......Page 181
Abstract......Page 182
2. Experimental equipment and methods......Page 183
3.1 The electrical characteristics following the changes in gas pressure and RF output......Page 184
Acknowledgement......Page 185
2. Experiments......Page 186
3.3 Characteristics of the QL lamp......Page 187
4. Conclusions......Page 188
Experiment......Page 190
Results and Discussion......Page 191
References......Page 193
Experiment......Page 194
Results and Discussion......Page 195
References......Page 196
Session R7 Chair: L.R. Arnaut......Page 198
Theoretical background......Page 200
Experimental Screen design......Page 202
Measured Performance of the screen......Page 203
References......Page 206
Introduction......Page 208
Nonuniform gap effects in parallel-plate resonators......Page 209
Gap effects in waveguide measurement of dielectric samples......Page 211
Higher-order modes in coaxial waveguide measurement of high-permittivity beads......Page 212
Acknowledgements......Page 213
References......Page 214
II.a. ANALYSIS OF FREQUENCY SELECTIVE SURFACES......Page 215
III.b. MEASUREMENT PROCEDURE......Page 216
IV. RESULTS AND DISCUSSION......Page 217
I. Introduction......Page 219
11. Scattering from FSS......Page 220
IV. Numerical Results......Page 221
References......Page 222
2 Theory......Page 223
4 Results......Page 224
5 Discussion......Page 225
References......Page 226
2. Theory......Page 227
3. Numerical Results and Discussions......Page 228
References......Page 230
2. Materials and experimental procedures......Page 231
3. Results and discussion......Page 232
References......Page 234
Session R8 Chair: A. Lakhtakia......Page 236
2. Experimental set-up......Page 238
3. Software presentation......Page 239
References......Page 241
2. Transmission and reflection coefficients......Page 242
3. Model calculations and comparison with experiment.......Page 243
References......Page 244
Results and discussion......Page 246
References......Page 248
Characterisation......Page 249
XRD study......Page 250
FTIR Characterization......Page 251
References......Page 252
Experiment......Page 253
Results and Discussion......Page 254
References......Page 255
Results and Discussion......Page 257
References......Page 260
Possibilitv of miniaturization of a microstrir, Y-isolator......Page 261
Results and Discussions......Page 262
Reference......Page 263
Abstract......Page 265
Session R10 Chair: S.M. Matitsine......Page 266
Experimental Details......Page 268
Result and Discussion......Page 269
References......Page 271
Materials......Page 272
Electromechanical Response of PANI / PDMS Composites of......Page 273
Effect of Crosslink Density of the Matrices......Page 274
References......Page 275
1. Introduction......Page 276
3. RF measurement set-up......Page 277
4. Results and discussion......Page 278
References......Page 279
Experimental......Page 280
Results and Discussion......Page 281
References......Page 283
2.1 Materials......Page 284
2.6 Electrorheological Properties Measurements......Page 285
3.1.1 Effect of Electric Field Strength......Page 286
References......Page 287
Abstract......Page 288
References......Page 289
Author Index......Page 290