The applications of electromagnetic phenomena within electrical engineering have been evolving and progressing at a fast pace. In contrast, the underlying principles have been stable for a long time and are not expected to undergo any changes. It is these electromagnetic field fundamentals that are the subject of discussion in this book with an emphasis on basic principles, concepts and governing laws that apply across the electrical engineering discipline.
Electromagnetic Foundations of Electrical Engineering begins with an explanation of Maxwell’s equations, from which the fundamental laws and principles governing the static and time-varying electric and magnetic fields are derived. Results for both slowly- and rapidly-varying electromagnetic field problems are discussed in detail.
Key aspects:
Offers a project portfolio, with detailed solutions included on the companion website, which draws together aspects from various chapters so as to ensure comprehensive understanding of the fundamentals.
Provides end-of-chapter homework problems with a focus on engineering applications.
Progresses chapter by chapter to increasingly more challenging topics, allowing the reader to grasp the more simple phenomena and build upon these foundations.
Enables the reader to attain a level of competence to subsequently progress to more advanced topics such as electrical machines, power system analysis, electromagnetic compatibility, microwaves and radiation.
This book is aimed at electrical engineering students and faculty staff in sub-disciplines as diverse as power and energy systems, circuit theory and telecommunications. It will also appeal to existing electrical engineering professionals with a need for a refresher course in electromagnetic foundations.
Author(s): J. A. Brandao Faria
Publisher: Wiley
Year: 2008
Language: English
Pages: 425
Electromagnetic Foundations of Electrical Engineering......Page 3
Contents......Page 9
About the Author......Page 13
Preface......Page 15
For Electrical Engineers/Practitioners......Page 19
For Students......Page 21
For Instructors......Page 23
Acknowledgements......Page 25
Project Portfolio......Page 27
P1 Analysis of a Power Delivery System......Page 29
P2 Cylindrical Type Transmission Lines......Page 33
P3 DC Transducer......Page 39
P4 Determination of the Conductivity of a Circular Conducting Disk......Page 43
P5 Directional Coupler Analysis......Page 45
P6 Ill-Defined Grounding Problems......Page 49
P7 Induction Machine Analysis......Page 51
P8 Line-Matching Technique using an Exponential Transmission-Line Section......Page 57
P9 Linear Variable Differential Transformer......Page 61
P10 Magnetic Actuator and Sensor Device......Page 65
P11 Overhead-Line Protection by Ground Wires......Page 69
P12 Power Line Carrier Communication......Page 73
P13 Pseudo-Balanced Three-Phase Lines......Page 79
P14 Screened High-Voltage Three-Phase Installation......Page 83
P15 Shielded Three-Phase Cable Analysis......Page 87
P16 Three-Route Microwave Splitter......Page 91
P17 Transmission-Line System with Balun Transformer for Even- to Odd-Mode Conversion......Page 95
P18 Transmission-Line System with Transformer-Stage Matching......Page 99
P19 Two-Way Loudspeaker Analysis......Page 103
P20 Variable Reluctance Transformer......Page 107
Part I A Brief Overview......Page 111
Introduction......Page 113
1.1 The Electric and Magnetic Field Vectors......Page 115
1.2 Constitutive Relations......Page 116
1.3 Units and Notation......Page 117
1.4 Fundamental Concepts of Voltage and Current Intensity......Page 118
Part II Stationary Field Phenomena......Page 121
Introduction......Page 123
2.2 Gradient Electric Field, Electric Potential, Voltage, Kirchhoff’s Voltage Law......Page 125
2.3 Electric Charge, Electric Displacement Vector......Page 128
2.4 Dielectric Media, Permittivity, Polarization, Dielectric Strength......Page 129
2.5 Conductors in Electrostatic Equilibrium......Page 131
2.6 Application Example (Filament of Charge)......Page 133
2.7 Capacitor, Capacitance, Electric Energy......Page 134
2.8 Application Example (Two-Wire Transmission Line)......Page 138
2.9 Multiple Conductor Systems......Page 143
2.9.1 Capacitance Matrix......Page 144
2.9.2 Partial Capacitances Scheme......Page 148
2.10 Application Example (Electric Coupling in Printed Circuit Boards)......Page 150
2.11 Electric Forces and Torques......Page 151
2.12 Proposed Homework Problems......Page 155
3.2 Conductivity, Current Density, Electric Circuits......Page 165
3.3 Current Intensity, Kirchhoff’s Current Law......Page 168
3.4 Resistor, Conductance, Resistance, Ohm’s Law......Page 170
3.5 Application Example (The Potentiometer)......Page 172
3.6 Application Example (The Wheatstone Bridge)......Page 174
3.7 Joule Losses, Generator Applied Field......Page 175
3.8 Generator Electromotive Force, Power Balance......Page 177
3.9 Proposed Homework Problems......Page 179
4.2 Ampère’s Law, Magnetomotive Force, Magnetic Voltage......Page 187
4.3 Magnetic Induction Field, Magnetic Induction Flux......Page 190
4.4 Application Example (Power Line Magnetic Fields)......Page 191
4.5 Magnetic Materials, Ferromagnetic Media, Saturation and Hysteresis......Page 194
4.6 Magnetic Circuits......Page 195
4.7 Application Example (Three-Legged Transformer)......Page 196
4.8 Magnetic Reluctance......Page 199
4.9 Inductor, Inductance, Magnetic Flux Linkage, Magnetic Energy......Page 200
4.10 Application Example (Coaxial Cable)......Page 205
4.11 Hysteresis Losses......Page 208
4.12 Multiple Circuit Systems......Page 209
4.13 Magnetic Forces and Torques......Page 213
4.14 Application Example (U-Shaped Electromagnet)......Page 214
4.15 Proposed Homework Problems......Page 215
Part III Slow Time-Varying Fields......Page 229
Introduction......Page 231
5.2 Gradient and Induction Electric Fields, Potential Vector......Page 233
5.3 Revisiting the Voltage Concept......Page 234
5.5 Application Example (Magnetic Noise Effects)......Page 236
5.6 Voltages and Currents in Magnetically Multicoupled Systems......Page 237
5.7 Application Example (Magnetic Coupling in Printed Circuit Boards)......Page 243
5.8 Eddy Currents......Page 245
5.9 Generalization of the Induction Law to Moving Circuit Systems......Page 246
5.10 Application Example (Electromechanical Energy Conversion)......Page 247
5.11 DC Voltage Generation......Page 249
5.12 AC Voltage Generation......Page 250
5.13 Proposed Homework Problems......Page 252
6.2 Displacement Current, Generalized Ampère’s Law......Page 263
6.3 Charge Continuity Equation......Page 264
6.4 Revisiting the Current Intensity Concept......Page 266
6.5 Application Example (Capacitor Self-Discharge)......Page 267
6.6 Voltages and Currents in Electrically Multicoupled Systems......Page 268
6.7 Proposed Homework Problems......Page 270
7.1 Introduction......Page 275
7.2 Steady-State Harmonic Regimes......Page 276
7.2.1 Characterization of Sinusoidal Quantities......Page 277
7.2.2 Complex Amplitudes or Phasors......Page 280
7.2.3 Application Example (RLC Circuit)......Page 281
7.2.4 Instantaneous Power, Active Power, Power Balance Equation......Page 283
7.2.5 Complex Power, Complex Poynting Theorem......Page 286
7.2.6 Impedance and Admittance Operators......Page 288
7.2.7 Resonance......Page 289
7.2.8 Application Example (RL || C Circuit)......Page 290
7.3 Transformer Analysis......Page 293
7.3.1 The Ideal Transformer......Page 295
7.3.2 Transformer Impedance, Pseudo Lenz’s Law......Page 296
7.3.3 Equivalent Circuits......Page 297
7.3.4 Application Example (Capacitively Loaded Transformer)......Page 300
7.4.1 Free-Regime and Steady-State Solutions......Page 302
7.4.3 Analysis of the Capacitor Charging Process......Page 304
7.4.4 Connecting an Inductive Load to an AC Generator......Page 308
7.4.5 Disconnecting an Inductive Load......Page 310
7.4.6 Application Example (Switching Off a Transformer Protected by a Capacitor)......Page 312
7.5 Proposed Homework Problems......Page 316
Part IV Rapid Time-Varying Fields......Page 331
Introduction......Page 333
8.1 Electromagnetic Waves......Page 335
8.2 Poynting Theorem, Poynting Vector, Power Flow......Page 337
8.3 Time-Harmonic Fields, Field Polarization, RMS Field Values......Page 341
8.4 Phasor-Domain Maxwell’s Equations, Material Media Constitutive Relations......Page 343
8.5 Application Example (Uniform Plane Waves)......Page 344
8.6 Complex Poynting Vector......Page 346
8.7 Application Example (Skin Effect)......Page 348
8.8 Proposed Homework Problems......Page 352
9.1 Introduction......Page 361
9.2 Time-Domain Transmission-Line Equations for Lossless Lines......Page 363
9.2.1 Wave Parameters, Propagation Velocity, Characteristic Wave Resistance......Page 366
9.2.2 Pulse Propagation, Pulse Reflection......Page 368
9.3 Application Example (Parallel-Plate Transmission Line)......Page 371
9.4 Frequency-Domain Transmission-Line Equations for Lossy Lines......Page 375
9.4.1 Per-Unit-Length Longitudinal Impedance, Per-Unit-Length Transverse Admittance......Page 376
9.4.2 Propagation Constant, Phase Velocity, Characteristic Wave Impedance......Page 377
9.4.3 Transfer Matrix, Non-Uniform Line Analysis......Page 380
9.5.1 Terminated Line, Load Reflection Coefficient, Line Input Impedance......Page 382
9.5.2 Matched Line, Open Line, Short-Circuited Line......Page 384
9.5.3 Standing Wave Pattern, Standing Wave Ratio, Active Power......Page 388
9.5.4 The Low-Frequency Limit Case, Short Lines......Page 390
9.6 Application Example (Line-Matching Techniques)......Page 391
9.7 Multiconductor Transmission Lines......Page 395
9.8 Application Example (Even and Odd Modes)......Page 398
9.9 Proposed Homework Problems......Page 401
Appendix A Formulas from Vector Analysis......Page 413
Appendix B Lorentz Transformation......Page 415
Appendix C Elements of Complex Algebra......Page 417
Appendix D Elements of Fourier Analysis......Page 419
Bibliography......Page 421
Index......Page 423