Electromagnetic Band Gap Structures in Antenna Engineering (The Cambridge RF and Microwave Engineering Series)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This comprehensive, applications-oriented survey of the state-of-the art in Electromagnetic Band Gap (EBG) engineering explains the theory, analysis, and design of EBG structures. It helps you to understand EBG applications in antenna engineering through an abundance of novel antenna concepts, a wealth of practical examples, and complete design details. You discover a customized FDTD method of EBG analysis, for which accurate and efficient electromagnetic software is supplied (www.cambridge.org/9780521889919) to provide you with a powerful computational engine for your EBG designs. The first book covering EBG structures and their antenna applications, this provides a dynamic resource for engineers, and researchers and graduate students working in antennas, electromagnetics and microwaves.

Author(s): Fan Yang, Yahya Rahmat-Samii
Edition: 1
Year: 2008

Language: English
Pages: 280

Cover......Page 1
Half-title......Page 3
Series-title......Page 4
Title......Page 5
Copyright......Page 6
Contents......Page 7
Preface......Page 11
Acknowledgements......Page 13
Abbreviations......Page 14
1.1 Background......Page 17
1.2.1 EBG definition......Page 18
1.2.2 EBG and metamaterials......Page 20
1.3 Analysis methods for EBG structures......Page 22
1.4.1 Antenna substrates for surface wave suppressions......Page 24
1.4.2 Antenna substrates for efficient low profile wire antenna designs......Page 25
1.4.3 Reflection/transmission surfaces for high gain antennas......Page 26
References......Page 27
2.1.1 Introduction......Page 30
2.1.2 Yee’s cell and updating scheme......Page 31
One-dimensional (1-D) perfectly matched layers......Page 34
Three-dimensional (3-D) perfectly matched layers......Page 36
2.1.4 FDTD excitation......Page 38
2.1.5 Extraction of characteristic parameters......Page 39
2.2.1 Fundamental challenges in PBC......Page 40
2.2.2 Overview of various PBCs......Page 41
2.2.3 Constant kx method for scattering analysis......Page 42
Rationale of the constant kx method......Page 43
Implementation of the constant kx method and its advantages......Page 45
2.3.1 Problem statement......Page 46
2.3.2 Brillouin zone for periodic waveguides......Page 47
A grounded slab loaded with periodic patches [31]......Page 49
2.4 Plane wave scattering analysis......Page 53
2.4.1 Problem statement......Page 54
2.4.2 Plane wave excitation......Page 55
A dipole frequency selective surface (FSS)......Page 57
Surface wave region and plane wave region......Page 61
Surface impedance and wave impedance......Page 62
2.5.2 ARMA estimator......Page 65
Unified analysis of a grounded dielectric slab......Page 67
Corrugated soft/hard surface......Page 68
2.6 Projects......Page 70
References......Page 72
3.1.1 Effective medium model with lumped LC elements......Page 75
3.1.2 Transmission line model for surface waves......Page 77
3.1.3 Transmission line model for plane waves......Page 78
3.2.1 FDTD model......Page 79
3.2.2 Near field distributions inside and outside the frequency band gap......Page 81
3.3.1 Dispersion diagram......Page 83
3.3.2 Surface wave band gap......Page 84
3.4.1 Reflection phase......Page 85
3.4.2 EBG reflection phase: normal incidence......Page 86
3.4.3 EBG reflection phase: oblique incidence......Page 87
3.5 Soft and hard surfaces......Page 90
3.5.1 Impedance and reflection coefficient of a periodic ground plane......Page 91
Bandwidth for soft and hard operations......Page 93
Soft, hard, PEC, and PMC surfaces......Page 95
Corrugated surface......Page 96
Mushroom-EBG surface......Page 98
3.6 Classifications of various EBG structures......Page 100
References......Page 101
4.1.1 Patch width effect......Page 103
4.1.3 Substrate thickness effect......Page 105
4.1.4 Substrate permittivity effect......Page 106
4.2 Comparison of mushroom and uni-planar EBG designs......Page 107
4.3.1 Rectangular patch EBG surface......Page 111
4.3.3 EBG surface with offset vias......Page 113
4.3.4 An example application: PDEBG reflector......Page 115
4.4.1 Single spiral design......Page 119
4.4.3 Four-arm spiral design......Page 121
4.5 Dual layer EBG designs......Page 123
4.6.1 Particle swarm optimization: a framework......Page 128
4.6.2 Optimization for a desired frequency with a +90° reflection phase......Page 129
4.6.3 Optimization for a miniaturized EBG structure......Page 133
4.6.4 General steps of EBG optimization problems using PSO......Page 134
4.7.3 Tunable EBG surface designs......Page 136
References......Page 140
5.1 Patch antennas on high permittivity substrate......Page 143
5.2.1 Patch antenna surrounded by EBG structures......Page 146
5.2.2 Circularly polarized patch antenna design......Page 148
5.2.3 Various EBG patch antenna designs......Page 152
5.3 Mutual coupling reduction of a patch array......Page 154
5.3.1 Mutual coupling between patch antennas on high dielectric constant substrate......Page 155
5.3.2 Mutual coupling reduction by the EBG structure......Page 158
5.3.3 More design examples......Page 163
5.4.2 EBG patch antenna for wearable electronics......Page 165
5.4.3 EBG patch antennas in phased arrays for scan blindness elimination......Page 167
References......Page 169
6.1.1 Comparison of PEC, PMC, and EBG ground planes......Page 172
6.1.2 Operational bandwidth selection......Page 174
6.1.3 Parametric studies......Page 177
6.2.1 Two types of low profile antennas......Page 180
6.2.2 Performance comparison between wire-EBG and patch antennas......Page 182
6.2.3 A dual band wire-EBG antenna design......Page 185
6.3 Circularly polarized curl antenna on EBG ground plane......Page 187
6.3.1 Performance of curl antennas over PEC and EBG ground planes......Page 188
6.3.2 Parametric studies of curl antennas over the EBG surface......Page 191
6.3.3 Experimental demonstration......Page 194
6.4 Dipole antenna on a PDEBG ground plane for circular polarization......Page 196
6.4.1 Radiation mechanism of CP dipole antenna......Page 197
6.4.2 Experimental results......Page 198
6.5 Reconfigurable bent monopole with radiation pattern diversity......Page 201
6.5.1 Bent monopole antenna on EBG ground plane......Page 202
6.5.2 Reconfigurable design for one-dimensional beam switch......Page 204
6.6 Printed dipole antenna with a semi-EBG ground plane......Page 207
6.6.1 Dipole antenna near the edge of a PEC ground plane......Page 209
6.6.2 Enhanced performance of dipole antenna near the edge of an EBG ground plane......Page 210
6.6.3 Printed dipole antenna with a semi-EBG ground plane......Page 211
References......Page 216
7.1.1 Comparison of two artificial ground planes......Page 219
7.1.2 Surface waves in the grounded slab with periodic patch loading......Page 222
7.2.1 Performance of a low profile dipole on a patch-loaded grounded slab......Page 225
7.2.2 Radiation mechanism: the surface wave antenna......Page 228
7.2.3 Effect of the finite artificial ground plane......Page 231
7.3 Patch-fed surface wave antennas......Page 233
7.3.1 Comparison between a circular microstrip antenna and a patch-fed SWA......Page 234
7.4 Dual band surface wave antenna......Page 239
7.4.1 Crosspatch-fed surface wave antenna......Page 242
7.4.2 Modified crosspatch-fed surface wave antenna for dual band operation......Page 244
References......Page 252
1 Overview......Page 254
2.1 Origins of EBG......Page 255
2.3 Interesting EBG properties......Page 256
3.2 Enhanced EBG performance......Page 257
4.2 Low profile wire antennas and slot antennas......Page 258
4.4 EBG antennas in real-life applications......Page 259
References......Page 260
Index......Page 277