Electrodynamics of Metamaterials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Light is in a sense ''one-handed'' when interacting with atoms of conventional materials. This is because out of the two field components of light, electric and magnetic, only the electric ''hand'' efficiently probes the atoms of a material, whereas the magnetic component remains relatively unused because the interaction of atoms with the magnetic field component of light is normally weak. Metamaterials, i.e. artificial materials with rationally designed properties, can enable the coupling of both of the field components of light to meta-atoms, enabling entirely new optical properties and exciting applications with such ''two-handed'' light. Among the fascinating properties is a negative refractive index. The refractive index is one of the most fundamental characteristics of light propagation in materials. Metamaterials with negative refraction may lead to the development of a superlens capable of imaging objects and their fine structures that are much smaller than the wavelength of light. Other exciting applications of metamaterials include novel antennae with superior properties, optical nano-lithography and nano-circuits, and ''meta-coatings'' that can make objects invisible. The word ''meta'' means ''beyond'' in Greek, and in this sense the name ''metamaterials'' refers to ''beyond conventional materials.'' Metamaterials are typically man-made and have properties not available in nature. What is so magical about this simple merging of ''meta'' and ''materials'' that has attracted so much attention from researchers and has resulted in exponential growth in the number of publications in this area? The answer you can find in this book.

Author(s): Shalaev V.M., Sarychev A.K.
Year: 2007

Language: English
Pages: 247
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Физика наноразмерных систем;Нанооптика и нанофотоника;

Contents......Page 12
Preface......Page 8
1. Introduction......Page 14
1.1 Surface Plasmon Resonance......Page 15
1.2 Percolation Threshold: Singularities in Metal-dielectric Composites......Page 24
2.1 Metamaterial......Page 32
2.2 Conductivity and Dielectric Constant: Effective Medium Theory......Page 40
2.3 High-frequency Response......Page 51
2.3.1 Scattering of electromagnetic wave by conducting stick......Page 52
2.3.2 High-frequency effective dielectric function......Page 60
2.4 Giant Enhancements of Local Electric Fields......Page 63
2.5 Optical Magnetism, Left-handed Optical Materials and Superresolution......Page 67
2.5.1 Analytical theory of magnetic plasmon resonances......Page 74
2.5.2 Numerical simulations of two-dimensional nanowire structures......Page 81
2.5.3 Capacitance and inductance of two parallel wires......Page 85
2.6 Planar Nanowire Composites......Page 90
3.1 Introduction......Page 96
3.2 Giant Field Fluctuations......Page 102
3.2.1 Lattice model......Page 106
3.2.2 Numerical method......Page 108
3.2.3 Field distributions on semicontinuous metal films......Page 110
3.3.1 Localization length and average intensity of local electric field......Page 115
3.3.2 High-order moments of local electric fields......Page 121
3.3.3 Properties of the localized eigenmodes......Page 124
3.3.4 Scaling theory of giant field fluctuations......Page 130
3.4 Anomalous Light Scattering from Semicontinuous Metal Films......Page 135
3.4.1 Rayleigh scattering......Page 136
3.4.2 Scaling properties of correlation function......Page 140
3.5 Surface Enhanced Raman Scattering (SERS)......Page 143
3.6 Giant Enhancements of Optical Nonlinearities......Page 149
3.7 Percolation-enhanced Nonlinear Scattering: High Harmonic Generation......Page 154
4. Optical Properties of Metal-dielectric Films: Beyond Quasistatic Approximation......Page 166
4.1 Generalized Ohm's Law (GOL) and Basic Equations......Page 167
4.2 Transmittance, Reectance, and Absorptance......Page 173
4.3 Numerical Simulations of Local Electric and Magnetic Fields......Page 178
4.4 Spatial Moments of Local Electric and Magnetic Fields......Page 180
4.5 Extraordinary Optical Transmittance (EOT)......Page 185
4.5.1 Resonant transmittance......Page 200
4.5.2 Light-induced and light-controlled transmittance......Page 213
4.5.3 Discussion......Page 217
5. Electromagnetic Properties of Metal-dielectric Crystals......Page 220
5.1 Metal-dielectric Composites......Page 221
5.2 Electromagnetic Crystals......Page 233
5.2.1 Cubic lattice of metal spheres......Page 234
5.2.2 A wire-mesh electromagnetic crystal......Page 237
Bibliography......Page 246