Author(s): Jian Wei Xu, Ming Hui Chua, Kwok Wei Shah
Series: Smart Materials Series
Publisher: Royal Society of Chemistry
Year: 2019
Language: English
Pages: 547
Cover......Page 1
Preface......Page 8
Contents......Page 10
1.1 General Introduction......Page 20
1.2 History of Electrochromism......Page 21
1.3 Mechanism of Electrochromism and EC Devices......Page 22
1.4.1 Smart Glass/Windows......Page 23
1.4.3 EC Displays......Page 26
1.4.4 Wearable Apparel and Devices......Page 27
1.4.5 Modulation of Microwave and Near-Infrared Radiation......Page 32
1.5 Conclusion......Page 33
References......Page 34
2.1.1 Types of Electrochromes......Page 41
2.2 Classes of Electrochromic Materials......Page 42
2.2.1 Metal Oxides......Page 43
2.2.3 Metal Phthalocyanines......Page 44
2.2.4 Viologens......Page 47
2.2.5 Conjugated Polymers......Page 48
2.2.6 Other Organic Electrochromes......Page 51
2.3 Architecture and Components of Electrochromic Devices......Page 52
2.3.1.1 Optically Transparent Electrode......Page 53
2.3.2.2 Semi-solid/Solid Electrolytes......Page 54
2.3.3.1 Film Deposition and Patterning......Page 56
2.3.4 Charge-storing/Counter Layer......Page 59
2.4 Electrochromic Performance Parameters......Page 60
2.4.2 Optical Contrast/Photopic Contrast......Page 61
2.4.5 Optical Memory......Page 63
2.5 Concluding Remarks......Page 64
References......Page 65
Chapter 3 Conjugated Polymers for Electrochromic Applications......Page 70
3.1 Introduction......Page 71
3.2 RGB (Red, Green, Blue) Based Electrochromics......Page 72
3.3 CMYK (Cyan, Magenta, Yellow, Key) Based Electrochromics......Page 81
3.4 Water Processable Electrochromic Polymers......Page 87
3.5 PEDOT and Its Derivatives: Attractive Electrochromic Polymers......Page 90
3.6 Fluorescent Polymers......Page 97
3.7 Triphenylamine (TPA) Bearing Polymers......Page 108
3.8 Concluding Remarks......Page 116
References......Page 117
4.1 Introduction......Page 122
4.2.1 D-A Polymers with Neutral Primary Red-Green-Blue Colors......Page 126
4.2.2 D-A Polymers with Secondary or Tertiary Colors......Page 130
4.2.3 D-A Polymers with Multi-color Switching......Page 132
4.2.4 D-A Polymers with NIR Switching Ability......Page 135
4.3.1 High Optical Contrast and Fast Switching Speed......Page 136
4.3.2 High Coloration Efficiency......Page 138
4.3.3 High Cycling Stability......Page 141
4.4 Conclusion......Page 142
References......Page 143
5.1 Introduction......Page 148
5.2.1 AIEE-active and Electrochromic Bifunctional Polymer and Device......Page 149
5.2.2 Trifunctional CdSe Quantum Dots-Polymer Composite Film......Page 152
5.2.3 Bi-functional Europium Ion Doped WO3 Film......Page 161
References......Page 168
6.1 Introduction......Page 170
6.1.2 Key Parameters for OM and Bistability......Page 171
6.1.3 OM of Molecular Level EC Materials......Page 172
6.2.2 Optical Memory in Thiophenyl Copolymers......Page 174
6.2.3 Optical Memory in Indole-containing Copolymers with PEDOT Layer......Page 177
6.2.4 Optical Memory in Polyselenophenes......Page 180
6.2.5 Donor-Acceptor Type ECPs......Page 184
6.3.1 Optical Memory of Poly (2,2-dimethyl-3,4-propylenedioxythiophene) (PProDOT-Me2)......Page 187
6.3.2 IET and IDT Mechanism to Reach Bistability......Page 190
6.3.3 Bistability of Side Chain Engineered ProDOTs......Page 193
6.3.4 Charge Balanced Bistable ECDs......Page 201
6.4 Conclusion......Page 207
References......Page 208
7.1 Introduction......Page 211
7.2 Conventional Mechanism of Electroluminochromism......Page 212
7.3 Electroluminochromism Based on Small Organic Molecules......Page 213
7.4 Electroluminochromism Based on Emissive Polymeric Films......Page 219
7.5 Electroluminochromism Based on Photofunctional Transition-metal Complexes......Page 223
7.6 Electroluminochromism Based on Emissive Nanocomposite Films......Page 229
7.7 Summary and Outlook......Page 232
References......Page 234
8.1.1 Electrochromism in Conjugated Polymer......Page 237
8.1.2 Donor-Accepter Approach......Page 238
8.2.1 Thiophene and Its Derivatives......Page 239
8.2.2 EDOT and Its Derivatives......Page 241
8.2.3 Pyrrole and Its Derivatives......Page 243
8.2.5 Triphenylamine and Its Derivatives......Page 245
8.3 Electrochromic Polymers with Different D-A Structures......Page 247
8.3.1.1 Thiophene and Its Derivatives as D Units......Page 249
8.3.1.2 EDOT and Its Derivatives as D Units......Page 253
8.3.1.3 Other D Systems......Page 260
8.3.2 D-A Polymers with Pendent A Units......Page 261
8.3.3 D-A Polymers Based on Cruciform Monomers......Page 264
8.3.4 D-A polymers Based on Star-shaped Monomers......Page 265
8.3.5 D-A Polymers Based on Dendritic Monomers......Page 269
8.4 Conclusion and Outlook......Page 270
References......Page 271
9.1 Introduction......Page 280
9.1.1 Electrochromic/Electrofluorochromic Devices......Page 281
9.2 Smart Electrochromic Liquid Crystalline Materials......Page 285
9.2.1 Electrochromic Ionic Liquid Crystals with p-Type Character......Page 286
9.2.2 Electrochromic Liquid Crystals Incorporating the Classic Viologen as Redox Active Unit (n-Type)......Page 288
9.2.3 Viologen-based Liquid Crystalline Rotaxanes......Page 293
9.3 Extended Viologens as Multifunctional Smart Liquid Crystals......Page 296
9.3.1 Thienoviologens Liquid Crystals......Page 299
9.4 Electrofluorochromic Liquid Crystals......Page 303
9.5 Conclusions......Page 306
References......Page 307
10.1 Fundamental Chemistry of Carbazole......Page 312
10.2 Electrochemistry and Electropolymerization of Carbazole Derivatives......Page 313
10.3 Electrochromic Properties of Polycarbazoles......Page 317
10.3.1 Polymers from Monomers Containing One Carbazole Unit......Page 320
10.3.2 Polymers from Monomers Containing Two Carbazole Units......Page 323
10.3.3 Polymers from Monomers Containing Multiple Carbazole Units......Page 327
10.4 Smart Windows Application of Polycarbazole Derivatives......Page 332
10.5 Conclusion......Page 337
References......Page 338
11.1.1 High-performance Polymers......Page 342
11.2.1 Polyimides......Page 347
11.2.3 Poly(amide-imide)s......Page 348
11.2.4 Poly(ether-imide)s and Poly(ether-amide)s......Page 349
11.2.4.2 Fluorinated Poly(ether-imide)s......Page 352
11.2.5 Poly(hydrazide)s and Poly(oxadiazole)s......Page 356
11.3.1 Introduction of Protection Groups......Page 358
11.3.2 Strategies for Increasing Electrochromic-coloring Stages......Page 361
11.3.3 Facile Electropolymerization for Poly(arylamine)s......Page 366
11.4 Electrochromic Devices......Page 369
11.4.1 Single Layer Electrochromic Devices......Page 372
11.4.2 Complementary Electrochromic Devices......Page 375
11.4.3 Flexible Electrochromic Devices......Page 378
11.5 Conclusion and Perspectives......Page 382
References......Page 383
12.1 Introduction......Page 391
12.2 Electrochemistry and Electrochromism of Viologens......Page 392
12.2.2.2 Dimerized Viologen Radical Cations......Page 393
12.2.2.3 Insoluble Viologen Radical Cations......Page 395
12.2.2.4 Aging of Insoluble Viologen Radical Cations......Page 396
12.2.2.5 Influence of Substitution Groups on Viologen Radical Cations......Page 398
12.3.1 Mechanism of Viologen-based Electrochromic Devices......Page 400
12.3.2 Type-1 Electrochromes-viologens in Non-aqueous Solvents......Page 403
12.3.3 Type-2 Electrochromes-insoluble Viologen Radical Cations......Page 406
12.3.4 Type-3 Electrochromes-immobilized Viologens......Page 407
12.3.4.1 Anchored Viologens......Page 408
12.3.4.2 Polyviologens......Page 409
12.3.4.3 Viologens in Gel or Solid-state Electrolytes......Page 413
References......Page 419
13.1.1 Organic Polymers......Page 425
13.1.2 Linear Structures......Page 426
13.1.4 π-Conjugated Structures......Page 428
13.1.5 Metallo-supramolecular Polymers......Page 429
13.1.6 Color of Metallo-supramolecular Polymers......Page 431
13.2.1 Synthesis......Page 432
13.2.2 Optical and Electrochemical Properties......Page 433
13.2.3 Electrochromic Properties......Page 435
13.3.1 Synthesis......Page 436
13.3.2 Electrochromic Properties......Page 437
13.4.1 Synthesis......Page 440
13.4.2 Electrochemical Properties......Page 442
13.4.3 Multicolor Electrochromism......Page 443
13.5.1 Device Fabrication......Page 444
13.5.2 Flexible Electrochromic Devices......Page 445
References......Page 447
14.1 Introduction......Page 449
14.2.1 The Advantages of One-dimensional Nanostructures for Electrochromism......Page 450
14.2.2 Synthesis of One-dimensional Nanostructures......Page 451
14.2.2.1.1.1 Hydrothermal Synthesis......Page 452
14.2.2.1.1.2 Ambient Pressure Solution Process......Page 454
14.2.2.1.2 Vapor-based Process......Page 455
14.2.2.1.3 Electrospinning Process......Page 457
14.2.2.1.4 Chemical Oxidative and Electrochemical Polymerization Processes......Page 458
14.2.2.2.1 AAO and PC Templating......Page 460
14.2.2.2.2 Surfactant-assistant Templating......Page 462
14.2.3.1 WO3 and TiO2 1D Nanostructures......Page 464
14.2.3.2 NiO and Co3O4 1D Nanostructures......Page 467
14.2.3.3 V2O5 and MoO3 1D Nanostructures......Page 468
14.2.3.4 Conductive Polymer 1D Nanostructures......Page 471
14.3 3D Nanostructured Electrochromic Materials......Page 473
14.3.1.1 The Role of 3D Nanostructures in Inorganic Electrochromic Materials......Page 474
14.3.1.2.1 Physical Vapor Deposition......Page 475
14.3.1.2.3 CBD......Page 477
14.3.1.2.5 Electrodeposition......Page 479
14.3.1.2.6 Templating......Page 480
14.3.2 3D Nanostructured Organic Electrochromic Materials......Page 485
14.3.3 Outlook of 3D Nanostructured Electrochromic Materials......Page 486
References......Page 488
15.1 Metal Electrodeposition as an Electrochromic Process......Page 494
15.2.1 Current for Ag Deposition Under Electrode Reaction Control or Diffusion Control......Page 500
15.2.2 Size-selective Electrodeposition of Metal Particles and the Kinetics......Page 501
15.3 Localized Surface Plasmon Resonance (LSPR) in Metal Nanoparticles for Full Color EC Devices......Page 503
15.3.1 Absorption and Diffusion of Light by LSPR......Page 504
15.3.2 Color of Silver Nanostructures with LSPR......Page 505
15.3.2.2 Silver Nanoplates......Page 506
15.4 Multicolor EC Device with Reversible Metal Electrodeposition......Page 508
Acknowledgments......Page 510
References......Page 511
16.1 Introduction to Electrochromic Smart Windows......Page 513
16.2 Electrochromic Materials for Smart Windows......Page 517
16.3.1 Energy Savings......Page 518
16.3.2 Lighting Performance......Page 521
16.3.3 Operation and Control......Page 524
16.3.4 Durability......Page 526
16.4 Challenge and Future of Electrochromic Smart Windows in Green Building Applications......Page 528
16.4.2.1 Modification of EC Materials: Solar Absorptive to Solar Reflective......Page 529
16.4.2.2 Connection of EC Smart Windows and the Internet of Things (IoT)......Page 531
16.4.2.3 Integration of EC Smart Windows and Passive Technologies......Page 532
16.5 Market Potential of Electrochromic Smart Windows for Green Building Applications......Page 533
16.6 Summary......Page 534
References......Page 535
Subject Index......Page 540