Electrochemical Components

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book focuses on the methods of storage commonly used in hybrid systems.
After an introductory chapter reviewing the basics of electrochemistry, Chapter 2 is given over to the storage of electricity in the form of hydrogen. Once hydrogen has been made, we have to be able to convert it back into electricity on demand. This can be done with another energy converter: a fuel cell, the subject of Chapter 3. Such a system is unable to deliver significant dynamics in terms of storage and release of electricity and needs to be supplemented with another solution: a detailed study of supercapacitors is provided in Chapter 4.While the storage systems touched upon in the previous three chapters (hydrogen batteries and supercapacitors) both exhibit advantageous characteristics, at present they are still relatively costly. Thus, the days of the electrochemical accumulator by no means appear to be numbered just yet. This will therefore be the topic of Chapter 5. Finally, on the basis of the elements laid down in the previous chapters, Chapter 6 will focus on electrical hybridization of these storage systems, with a view to enhancing the performance (in terms of energy, lifetime, cost, etc.) of the newly formed system.
Aimed at an audience of researchers, industrialists, academics, teachers and students, many exercises, along with corrected solutions, are provided throughout the book.

Contents

1. Basic Concepts of Electrochemistry used in Electrical Engineering.
2. Water Electrolyzers.
3. Fuel Cells.
4. Electrical Energy Storage by Supercapacitors.
5. Electrochemical Accumulators.
6. Hybrid Electrical System.

About the Authors

Marie-Cécile Péra is a Full Professor at the University of Franche-Comte in France and Deputy Director of the FEMTO-ST Institute (CNRS). Her research activities include modeling, control and diagnosis of electric power generation systems (fuel cells – PEMFC and SOFC, supercapacities, batteries) for transportation and stationary applications. She has contributed to more than 180 articles in international journals and conferences.
Daniel Hissel is Full Professor at the University of Franche-Comte in France and Director of the Fuel Cell Lab Research Federation (CNRS). He also leads a research team devoted to hybrid electrical systems in the FEMTO-ST Institute (CNRS). He has published more than 250 research papers on modeling, control, diagnostics and prognostics of hybrid electrical systems.
Hamid Gualous is Full Professor at the University of Caen Lower Normandy in France and director of the LUSAC laboratory. His current research interests include power electronics, electric energy storage, power and energy systems and energy management.
Christophe Turpin is Full Researcher at the CNRS (French National Center for Scientific Research). He is responsible for hydrogen activities within the Laboratory LAPLACE, Toulouse, France. His research activities include the characterization and modeling of fuel cells and electrolyzers, the state of health of these components, and their hybridization with other electrochemical components (ultracapacitors, batteries) within optimized energy systems for stationary and aeronautical applications.

Author(s): Marie-Cécile Pera, Daniel Hissel, Hamid Gualous, Christophe Turpin
Series: ISTE
Edition: 1
Publisher: Wiley-ISTE
Year: 2013

Language: English
Pages: 336
Tags: Химия и химическая промышленность;Электрохимия;Химические источники тока;Химия и технология топливных элементов;

Cover
......Page 1
Title Page
......Page 5
Contents
......Page 7
Preface
......Page 13
1.2.1. Principle of operation......Page 15
1.2.2. Brief description of groups of components......Page 18
1.3. Redox reaction......Page 21
1.4.1. Enthalpy, entropy and free energy......Page 23
1.5. Potential or voltage of an electrode......Page 24
1.6. Reversible potential of a cell......Page 25
1.7. Faradaic current density and the Butler–Volmer equation......Page 27
1.8. Butler–Volmer equation for a whole cell......Page 29
1.9. From the Butler–Volmer equation to the Tafel equation......Page 31
1.10. Faraday’s law......Page 33
1.11. Matter transfer model: Nernst model......Page 34
1.12. Concept of limit current......Page 36
1.13. Expression of the polarization curve......Page 38
1.15. Electrochemical impedance......Page 41
1.16. Reagents and products in the gaseous phase: total pressure, partial pressure, molar fraction and mixture......Page 44
1.17.1. Calculation of the variation in enthalpy during the formation of a mole of water......Page 45
1.17.2. Calculation of the variation in entropy for the formation of a mole of water......Page 48
1.17.3. Calculation of the variation in free energy during the formation of a mole of water......Page 50
1.17.4. Calculation of the Nernst potential for a cell in a PEM fuel cell (PEMFC)......Page 52
1.17.5. Faraday equations for a Pb accumulator......Page 53
1.17.6. Calculation of the mass of water consumed by an electrolysis cell......Page 54
2.1. Introduction......Page 55
2.2. Principles of operation of the main water electrolyzers......Page 58
2.3. History of water electrolysis......Page 60
2.4.1. Alkaline technology......Page 65
2.4.2. PEM technology......Page 70
2.4.3. SO technology......Page 75
2.4.4. Comparison of the three water electrolyzer technologies......Page 78
2.4.5. Specifications of a commercial electrolyzer......Page 79
2.5.1. Energy-related elements......Page 81
2.5.2. Electrical behavior in the quasi-static state......Page 94
2.5.3. Electrical behavior in the dynamic state with a large signal......Page 109
2.5.4. Electrical behavior in a dynamic state with a small signal (impedance)......Page 114
2.6. Experimental characterization of the electrical behavior of an electrolyzer......Page 118
2.6.1. Polarization curve (quasi-static characterization)......Page 120
2.6.2. Impedance spectroscopy (dynamic small-signal characterization)......Page 122
2.6.3. Current steps......Page 124
2.6.5. Combining the approaches to characterization (advanced approach)......Page 125
2.7. Procedures for parameterizing the models......Page 126
2.7.1. Minimal combinatorial approach to experimental characterizations......Page 127
2.7.3. Low-frequency multi-sweeping approach......Page 128
2.7.4. Toward an optimal and systematic combinatorial exploitation of the experimental characterizations......Page 129
2.8. Combination with a fuel cell Concept of the “hydrogen battery”......Page 130
2.8.1. General considerations......Page 131
2.8.2. Static characteristics of an H2/O2 battery......Page 133
2.8.3. Deadband of an H2/O2 battery......Page 134
2.8.4. Brief overview of situation with industrial developments......Page 136
2.9. A few examples of applications for electrolyzers......Page 137
2.9.1. Points about industrial hydrogen production by electrolysis......Page 138
2.9.2. State of the art on applications coupling solar photovoltaic and hydrogen; close examination of the French projects MYRTE, PEPITE and JANUS......Page 140
2.10. Some points about the storage of hydrogen......Page 149
2.12. Exercises......Page 151
3.1. Introduction......Page 165
3.2. Classification of fuel cell technologies......Page 166
3.2.1. Classification on the basic of the acid/basic medium......Page 167
3.2.3. Classification on the basis of the type of electrolyte......Page 168
3.3.1. Constitution......Page 171
3.3.2. Characteristics......Page 174
3.4. Solid Oxide Fuel Cells (SOFCs)......Page 182
3.5.1. General points......Page 185
3.5.2. PEMFC systems......Page 187
3.5.3. SOFC systems......Page 193
3.6. Applications for fuel cells......Page 194
3.6.1. Mobile applications......Page 195
3.6.2. Stationary applications......Page 197
3.6.3. Applications in transport......Page 198
3.7.1. Calculation of the cost of platinum for an electrode......Page 204
3.7.3. Calculation of the flowrate of reactant gases entering the cell......Page 205
3.7.4. Calculation of the water content of the air upon input and output of the cell Calculation of the dew point at the cell output......Page 207
3.7.5. Calculation of the yield of a PEMFC......Page 211
3.7.6. Autonomy of an exploration submarine......Page 212
3.7.7. Power supply to an isolated farm site......Page 213
3.7.8. Fuel-cell generator for a private vehicle......Page 218
4.1. Introduction......Page 223
4.2.1. Structure and operation of supercapacitors......Page 225
4.2.2. Electrical and energetic characterization of supercapacitors......Page 228
4.3. Supercapacitor module sizing......Page 233
4.3.1. Power-based design......Page 234
4.3.2. Dimension design based on the energy stored by the supercapacitor......Page 236
4.3.3. Balancing the supercapacitors......Page 238
4.4. Supercapacitor modeling......Page 240
4.5. DC/DC converter associated with a supercapacitor module......Page 247
4.6. Thermal behavior of supercapacitors......Page 248
4.6.1. Thermal modeling of supercapacitors......Page 249
4.6.2. Modeling by thermal/electrical analogy......Page 251
4.7. Hybrid electricity storage device: the LIC (Lithium Ion Capacitor)......Page 252
4.8. Exercises – statements......Page 254
5.2.1. Operational principle......Page 267
5.2.2. Advantages and disadvantages to this technology......Page 268
5.3.1. Nickel-Cadmium (Ni-Cd) accumulator......Page 269
5.3.2. Nickel Metal Hydride (Ni-MH) accumulator......Page 270
5.3.3. Nickel-Zinc accumulator......Page 272
5.4.2. Principle of their function......Page 273
5.4.3. Advantages and disadvantages to these technologies......Page 274
5.4.4. Lithium-ion technology......Page 275
5.4.5. Lithium-metal-polymer technology......Page 276
5.4.6. Other technologies......Page 277
5.5.1. Capacity......Page 278
5.5.2. Internal resistance......Page 280
5.5.3. Voltages......Page 281
5.5.5. State of charge of a battery......Page 282
5.6.1. Thévenin model......Page 283
5.6.2. Improved Thévenin model......Page 284
5.6.3. FreedomCar model......Page 285
5.7. Aging of batteries......Page 286
5.8. Exercises......Page 287
6.2.1. General points......Page 291
6.2.2. Particular case of a hybrid electric vehicle......Page 292
6.3. Advantages to hybridization......Page 293
6.3.1. Ragone plot......Page 294
6.3.2. Different types of energy?......Page 298
6.3.3. Taking account of non-energy-related criteria in the choice of a hybrid electricity storage solution......Page 301
6.4. Management of the energy flows in a hybrid system......Page 303
6.4.1. Optimization-based strategies......Page 304
6.4.2. Rule-based strategies......Page 305
6.4.3. Criteria for the supervision of the energy flows......Page 306
6.5. Example of application in the domain of transport: the ECCE platform (Evaluation des Composants d’une Chaine de traction Electrique – Evaluation of the Components in an Electric Powertrain)......Page 307
6.6.1. Ragone plot of an ideal battery......Page 310
6.6.2. Ragone plot of an ideal capacitor......Page 313
6.6.3. Design of an electric vehicle......Page 316
6.6.4. Energy management in an electric vehicle......Page 320
Bibliography......Page 323
Index......Page 335