Electric Vehicles In Energy Systems: Modelling, Integration, Analysis, And Optimization

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book discusses the technical, economic, and environmental aspects of electric vehicles and their impact on electrical grids and energy systems. The book is divided into three parts that include load modeling, integration and optimization, and environmental evaluation. Theoretical background and practical examples accompany each section and the authors include helpful tips and hints in the load modeling and optimization sections. This book is intended to be a useful tool for undergraduate and graduate students, researchers and engineers who are trying to solve power and engineering problems related electric vehicles. • Provides optimization techniques and their applications for energy systems; • Discusses the economic and environmental perspectives of electric vehicles; • Contains the most comprehensive information about electric vehicles in a single source.

Author(s): Ali Ahmadian, Behnam Mohammadi-Ivatloo, Ali Elkamel
Publisher: Springer
Year: 2020

Language: English
Pages: 393
Tags: Transportation

Preface......Page 5
Contents......Page 7
1.1 Introduction......Page 9
1.2 The Motivations for Increasing the Penetration Rate of EVs......Page 10
1.2.2 The Cost of the Charging Infrastructure of EVs......Page 12
1.3.2 Hybrid Electric Vehicles (HEVs)......Page 14
1.4 Different Charging Rates of EVs......Page 15
1.5 Charging of EVs......Page 16
1.5.2.1 Centralized Charging Control Structure......Page 17
1.5.2.2 Decentralized Charging Control Structure......Page 19
1.5.2.3 Comparison Between Centralized and Decentralized Smart Charging Structures......Page 20
1.6 EVs as a Big Storage Unit in Power System by V2G......Page 21
1.6.2 Application of V2G to Improve Power System Security and Resiliency......Page 22
1.6.4 Application of V2G for Ancillary Services in the Distribution Network......Page 23
1.7 Conclusion......Page 24
References......Page 25
2.1 Introduction......Page 29
2.2.1 Monte Carlo Simulation method......Page 30
2.2.3 Queuing Theory......Page 31
2.2.5 Artificial Intelligence......Page 32
2.3 Modeling of EVs by ANNs......Page 33
2.3.1.1 Multilayer Perceptron ANN with Error Back Propagation Learning Method......Page 35
2.3.1.2 Multilayer Perceptron ANN Training by Levenberg-Marquardt Method......Page 38
2.3.2 ANN with Rough Neurons......Page 39
2.3.2.1 Multilayer Perceptron Neural Network with Rough Neurons and Back Propagation Learning Approach......Page 40
2.4 Optimal Charging of EVs......Page 42
2.5.1 EVs and Power System Data......Page 43
2.5.2 Evaluation Criteria......Page 44
2.5.3 Forecasting Results......Page 45
2.6 Conclusion......Page 48
Indices......Page 49
Variables......Page 50
References......Page 52
3.1 Introduction......Page 55
3.2 EV Operation Modes: An Overview......Page 57
3.3.1 On-Board EV BCS......Page 59
3.3.2 Off-Board EV BCS......Page 63
3.4 Validation of Off-Board EV Battery Chargers when Contextualized in Smart Homes and Smart Grids......Page 67
3.4.1 Comparative Analysis: Efficiency of the Different Cases......Page 68
3.4.2 Comparative Analysis: Operation of the Different Cases......Page 69
3.5 Conclusion......Page 76
References......Page 77
4.1 Introduction......Page 81
4.2 Modeling of the EVs......Page 83
4.3 Modeling of the Solar System......Page 84
4.4.1 Bi-Level Model with Controlled Charging......Page 85
4.4.2 Bi-Level Model with the Charging/Discharging Schedule......Page 89
4.4.3 A Bi-Level Problem Solving Method......Page 94
4.4.4.1 Single-Level Model with Controlled Charging......Page 95
4.4.4.2 Single-Level Model with Charging/Discharging Schedule......Page 97
4.4.5 Risk Management......Page 98
4.4.5.1 Risk-Based Bi-Level Model......Page 99
4.4.5.2 Risk-Based Single-Level Model......Page 100
4.5 Simulation Results......Page 101
4.5.2 The System Without the EVs and the Solar System......Page 102
4.5.3 The System with the EVs (Controlled Charging) With/Without the Solar System......Page 106
4.5.4 The System with the EVs (Charging/Discharging) With/Without the Solar System......Page 112
4.6 Conclusions......Page 120
Appendix A: Linear Power Flow......Page 123
Appendix B: Converting the Bi-Level Model to the Single-Level Model......Page 124
Converting Controlled Charging the Bi-Level Model to the Single-Level Model......Page 125
Converting Charging/Discharging Schedule the Bi-Level Model to the Single-Level Model......Page 128
Appendix C......Page 133
References......Page 134
5.1 Introduction......Page 137
5.2.1 Solar Energy......Page 139
5.3 Electrical Vehicle......Page 140
5.3.1.5 Comparing of the Efficiency of the Pure-Electric Vehicles and Hybrid Vehicles......Page 142
5.3.3.2 Hybrid Electric Vehicles (HEV)......Page 143
5.3.3.5 The Effect of PHEVs Performance on the Power Grid......Page 144
5.3.4 Mathematical Model of the Electric Vehicles Battery......Page 145
5.3.5 The Stored Energy in PHEVs´ Batteries......Page 146
5.3.6 The Amount of the Energy Required to PHEVs´ Battery Charging......Page 147
5.3.8 Technical Specifications of Electric Vehicle Battery......Page 148
5.3.9 PHEV Charge Battery......Page 149
5.4 Related Study......Page 150
5.5 Smart Charge......Page 151
5.6.1.1 Estimate the PHEVs Load Charge on a Large Scale......Page 152
5.7 Random Charge......Page 153
5.8 Managed Charge......Page 154
5.9 The Coordinated V2G Mode......Page 157
5.10 Mathematical Model of the Issue......Page 158
5.10.1 Optimization of the Issue......Page 159
5.11 Multiple Results of Exploitation of the Studied Grid......Page 160
5.11.1 Charging without Vehicle Management and V2G Capability......Page 161
5.11.2 Vehicle Managed Charging without V2G Capacity......Page 164
5.11.3 Managed Charge with V2G Capacity......Page 166
5.12 Conclusion......Page 169
References......Page 171
6.1 Introduction......Page 173
6.2.1 Linear Equivalent of the Cost Function......Page 175
6.2.2 Problem Constraints......Page 176
6.2.4 Modeling of Electric Vehicles......Page 179
6.3 Simulation Results......Page 180
6.3.1 Case Study 1: The Stochastic Generation of WTs Without EVs Participation......Page 181
6.3.2 Case Study 2: The Stochastic Generation of WTs with the Participation of the Uncoordinated EVs......Page 183
6.3.3 Case Study 3: The Stochastic Generation of WTs with the Participation of the Coordinated EVs......Page 184
6.4 Conclusion......Page 186
Appendix A......Page 187
References......Page 188
7.1 Introduction......Page 190
7.2 Electric Vehicles and Electrical Networks......Page 196
7.2.1 Batteries......Page 197
7.2.2 Chargers......Page 198
7.2.2.1 EV Charging Future......Page 200
7.3.1 Stand-Alone Micro-Grids......Page 201
7.4 Charging/Discharging Management of EVs......Page 202
7.4.1 Fair Charging/Discharging Rate......Page 203
7.4.4 Frequency Stability......Page 204
7.4.7 Consideration of Minimum SoC......Page 205
7.4.10 Decreasing Charging Costs......Page 206
7.5.1 Control Requirements......Page 207
7.5.2 Cooperative Control Formulation......Page 208
7.6 Conclusion......Page 212
Appendix A......Page 213
References......Page 215
Chapter 8: Optimal Energy and Reserve Management of the Electric Vehicles Aggregator in Electrical Energy Networks Considering.........Page 218
8.1 Introduction......Page 220
8.2.1 Objective Function......Page 222
8.2.4 DG......Page 223
8.2.5 The Constraint of the UG......Page 224
8.2.6 EVs Aggregator of the EVs......Page 225
8.2.7 DR Program......Page 226
8.2.9 Power Balance......Page 227
8.3.1 Input Data......Page 228
8.3.2 Simulation Results......Page 231
References......Page 236
9.1 Introduction......Page 239
9.2 The General Framework of the Bi-Level Programming Approach for EV Parking Price Bidding......Page 241
9.3.1 Upper-Level: Maximizing the EVs Parking Profit......Page 242
9.3.2 Lower Level: Minimize the Cost of the Aggregator......Page 244
9.4 Numerical Results......Page 245
Appendix A......Page 252
References......Page 253
10.1 Introduction......Page 254
10.2.1.1 Wind Power Output......Page 257
10.2.1.2 PV Power Output......Page 259
10.2.1.4 Arrival Time of EV Model......Page 260
10.2.2 BSS Operation......Page 261
10.3.1 The Upper-Level Formulation......Page 262
10.3.2 Constraints of Upper-Level Problem......Page 263
10.3.4 Constraints of Lower-Level Problem......Page 264
10.3.5 Determination of Power Exchanged Price Between MG and BSS Based on Real-Time Pricing Mechanism......Page 265
10.4.1 Case Study......Page 266
10.4.2 Results and Discussion......Page 268
10.5 Conclusion......Page 269
References......Page 271
11.1 Introduction......Page 273
11.2 Literature Review......Page 274
11.3 Problem Formulation......Page 276
11.4 Numerical Results......Page 282
11.5 Conclusion......Page 288
Appendix A......Page 289
References......Page 290
12.1.1 Literature Review on Energy Hubs......Page 293
12.1.2 Plug-in Electric Vehicles in Energy Hubs......Page 296
12.1.3 Contributions of This Chapter......Page 298
12.2.1 Energy Hub Model......Page 299
12.2.2 Energy Storage Model......Page 301
12.2.4 Model Inputs......Page 302
12.2.5 Model Optimization and Solution Methodology......Page 304
12.3 Residential Energy Hub System Case Study......Page 305
12.4 Results and Discussion......Page 308
12.4.1 Operating Costs Analysis......Page 309
12.4.2 GHG Emissions Analysis......Page 310
12.5 Conclusion......Page 311
Appendix A......Page 312
References......Page 314
13.1 Introduction......Page 317
13.2.2 Station Performance......Page 319
13.3.1 Information Gap Decision Theory......Page 320
13.4 Problem Formulation......Page 321
13.4.2 Constraints......Page 322
13.5 Model Assumptions and Simulations......Page 323
13.5.1 System Simulation Results......Page 324
13.6 Conclusion......Page 326
Appendix A......Page 327
References......Page 328
14.1 Introduction......Page 330
14.2.1 Types of DR Programs......Page 333
14.2.2 Customer Response: Electric Vehicle......Page 334
14.3 Demand Response Capability of Electric Vehicle......Page 335
14.3.1 Charging and Discharging Behaviour of EVs......Page 336
14.3.2 EVs as Responsible Demand......Page 340
14.4 Optimization......Page 345
14.4.1 Optimization of Smart Distribution System in Presence of EV......Page 347
14.4.2 Optimization of Parking Lots......Page 352
14.5 Conclusion......Page 356
References......Page 358
15.1 Introduction......Page 361
15.2 Demand Response......Page 363
15.2.1 Demand Response Effects on the Network......Page 365
15.3 Electric Vehicles......Page 366
15.3.1 Effect of Electrical Vehicles on the Power System......Page 368
15.3.2 Electric Vehicle Charging Methods......Page 369
15.3.3 Effect of Electric Vehicles on Smart Homes´ Demand......Page 373
15.3.4 Vehicle to Grid (V2G) and Grid to Vehicle (G2V) Effects......Page 374
15.4 Demand in Smart Homes......Page 375
15.5 Charging Management......Page 376
15.6 Comparison Between Controlled and Uncontrolled Charging Effect on Demand Curve and Consumption Cost......Page 377
15.7 Conclusion......Page 381
References......Page 382
Index......Page 386