Electric Vehicle Battery Systems provides operational theory and design guidance for engineers and technicians working to design and develop efficient electric vehicle (EV) power sources. As Zero Emission Vehicles become a requirement in more areas of the world, the technology required to design and maintain their complex battery systems is needed not only by the vehicle designers, but by those who will provide recharging and maintenance services, as well as utility infrastructure providers. Includes fuel cell and hybrid vehicle applications. Written with cost and efficiency foremost in mind, Electric Vehicle Battery Systems offers essential details on failure mode analysis of VRLA, NiMH battery systems, the fast-charging of electric vehicle battery systems based on Pb-acid, NiMH, Li-ion technologies, and much more. Key coverage includes issues that can affect electric vehicle performance, such as total battery capacity, battery charging and discharging, and battery temperature constraints. The author also explores electric vehicle performance, battery testing (15 core performance tests provided), lithium-ion batteries, fuel cells and hybrid vehicles. In order to make a practical electric vehicle, a thorough understanding of the operation of a set of batteries in a pack is necessary. Expertly written and researched, Electric Vehicle Battery Systems will prove invaluable to automotive engineers, electronics and integrated circuit design engineers, and anyone whose interests involve electric vehicles and battery systems. * Addresses cost and efficiency as key elements in the design process * Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies * Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies
Author(s): Sandeep Dhameja
Publisher: Newnes
Year: 2001
Language: English
Pages: 238
TABLE OF CONTENTS......Page 5
ACKNOWLEDGMENTS......Page 8
1 ELECTRIC VEHICLE BATTERIES......Page 9
ELECTRIC VEHICLE OPERATION......Page 10
Electronic Drive Systems......Page 11
INTRODUCTION TO ELECTRIC VEHICLE BATTERIES......Page 12
The Pb-Acid Battery......Page 14
The NiMH Battery......Page 16
The Li-ion Battery......Page 18
The Li-Polymer Battery......Page 21
FUEL CELL TECHNOLOGY......Page 22
CHOICE OF A BATTERY TYPE FOR ELECTRIC VEHICLES......Page 26
EFFECTS OF VRLA BATTERY FORMATION ON ELECTRIC VEHICLE PERFORMANCE......Page 31
ELECTRIC VEHICLE BODY AND FRAME......Page 32
EFFECTS OF CURRENT DENSITY ON BATTERY FORMATION......Page 33
Effects of Current Density on NiMH Battery Formation......Page 34
Effects of Electrode Oxidation on NiMH Battery Formation......Page 35
Effects of Elevated Temperatures on VRLA Battery Formation......Page 36
Activation and Formation of a NiMH Battery......Page 37
End of Formation of a VRLA Battery......Page 38
Failure Modes of VRLA......Page 39
BATTERY STORAGE......Page 43
Storage of a VRLA Battery......Page 44
Storage of an NiMH Battery......Page 45
THE LITHIUM-ION BATTERY......Page 47
TRACTION BATTERY PACK DESIGN......Page 49
BATTERY CAPACITY......Page 51
THE TEMPERATURE DEPENDENCE OF BATTERY CAPACITY......Page 52
STATE OF CHARGE OF A VRLA BATTERY......Page 54
Practical State-of-Charge Calculation......Page 57
CAPACITY DISCHARGE TESTING OF VRLA BATTERIES......Page 59
BATTERY CAPACITY RECOVERY......Page 61
DEFINITION OF NIMH BATTERY CAPACITY......Page 62
NiMH Battery Voltage During Discharge......Page 64
LI-ION BATTERY CAPACITY......Page 66
BATTERY CAPACITY TESTS......Page 68
ENERGY BALANCES FOR THE ELECTRIC VEHICLE......Page 72
Transmission Inefficiencies......Page 74
Power Losses Due to System Controller/Engine Inefficiency......Page 75
Power from a System Controller/Engine......Page 76
CHARGE COMPLETION OF A SINGLE VRLA BATTERY......Page 77
Temperature Compensation......Page 78
Recharging a Series String of VRLA Batteries......Page 79
TEMPERATURE COMPENSATION DURING BATTERY CHARGING......Page 80
Temperature Sensing of Traction Battery Packs......Page 82
Temperature-Based Termination Methods......Page 86
ENVIRONMENTAL INFLUENCES ON CHARGING......Page 88
CHARGING METHODS FOR NIMH BATTERIES......Page 89
Advances in NiMH Charging......Page 93
Charging Stations......Page 95
Charging Methods......Page 97
Electrical Safety......Page 98
Connection Resistance......Page 99
Cell/Unit Internal Impedance/Conductance......Page 100
Equalizing Charge......Page 101
Battery Charging Parameters......Page 102
THE FAST CHARGING PROCESS......Page 103
FAST CHARGING STRATEGIES......Page 106
THE FAST CHARGER CONFIGURATION......Page 109
Fast Charging Prerequisites......Page 112
Limitations of Fast Charging......Page 113
Fast Charging and Battery Overcharge......Page 115
Fast Charging and Battery Degradation......Page 116
Fast Charging and the Electrical Utility......Page 118
BATTERY PACK SAFETYÛELECTROLYTE SPILLAGE AND ELECTRIC SHOCK......Page 0
Driving Range at the End of Day-1 Test......Page 121
ELECTRIC VEHICLE SPEEDOMETER CALIBRATION......Page 122
6 ELECTRIC VEHICLE BATTERY DISCHARGING......Page 123
DEFINITION OF VRLA BATTERY CAPACITY......Page 125
DEFINITION OF NIMH BATTERY CAPACITY......Page 127
Voltage During Discharge......Page 129
Discharge Rate......Page 130
Effect of Temperature......Page 131
Termination of Discharge......Page 132
DISCHARGE CHARACTERISTICS OF LI-ION BATTERY......Page 135
DISCHARGE OF AN ELECTRIC VEHICLE BATTERY PACK......Page 136
COLD-WEATHER IMPACT ON ELECTRIC VEHICLE BATTERY DISCHARGE......Page 138
THE BATTERY PERFORMANCE MANAGEMENT SYSTEM......Page 141
A Model of the BPMS......Page 143
The Typical BPMS Configuration......Page 144
BPMS THERMAL MANAGEMENT SYSTEM......Page 145
Design Analysis of the Battery Thermal Management System......Page 148
THE BPMS CHARGING CONTROL......Page 149
Protecting the Traction Battery Pack......Page 150
The BPMS Charge Indicator......Page 152
Depolarization as a Process to Enhance Charging......Page 154
Smart Battery and BPMS Diagnostics Control......Page 155
HIGH-VOLTAGE CABLING AND DISCONNECTS......Page 156
SAFETY IN BATTERY DESIGN......Page 158
Electrical Safety......Page 159
Mitigation of Intrinsic Materials Hazards......Page 160
Charging Stations......Page 163
Coupling Types......Page 164
Reliability/Durability Test......Page 165
Vehicle Endurance Test......Page 166
VENTILATION......Page 167
8 TESTING AND COMPUTER-BASED MODELING OF ELECTRIC VEHICLE BATTERIES......Page 169
Core Battery Performance Tests......Page 171
Variable Power Discharge Test......Page 172
Sustained Hill-Climb Power Test......Page 173
Fast Charge Test......Page 174
ACCELERATED RELIABILITY TESTING OF ELECTRIC VEHICLES......Page 175
BATTERY CYCLE LIFE VERSUS PEAK POWER AND REST PERIOD......Page 179
Thermal Management of the Electric Vehicle Battery......Page 180
Battery Test Recommendations......Page 181
The Thermal and Electrochemical Coupled Model......Page 184
SAFETY REQUIREMENTS FOR ELECTRIC VEHICLE BATTERIES......Page 196
FUEL CELL PROCESSING TECHNOLOGY FOR TRANSPORTATION APPLICATIONS: STATUS AND PROSPECTS......Page 199
COMPARISON OF FUEL CELL TECHNOLOGIES......Page 206
FUEL-CELL EMISSIONS......Page 209
POLICY DIRECTIVES FOR CLEAN AIR ACT......Page 210
RECOMMENDATIONS......Page 211
VEHICLE BATTERY CHARGING CHECKLIST/LOG......Page 213
DAY 1/2/3 RANGE AND CHARGE TEST LOG......Page 215
SPEEDOMETER CALIBRATION TEST DATA LOG......Page 217
ELECTRIC VEHICLE PERFORMANCE TEST SUMMARY......Page 219
BIBLIOGRAPHY......Page 223
INDEX......Page 229