Electric Vehicle Battery Systems provides operational theory and design guidance for engineers and technicians working to design and develop efficient electric vehicle (EV) power sources. As Zero Emission Vehicles become a requirement in more areas of the world, the technology required to design and maintain their complex battery systems is needed not only by the vehicle designers, but by those who will provide recharging and maintenance services, as well as utility infrastructure providers. Includes fuel cell and hybrid vehicle applications. Written with cost and efficiency foremost in mind, Electric Vehicle Battery Systems offers essential details on failure mode analysis of VRLA, NiMH battery systems, the fast-charging of electric vehicle battery systems based on Pb-acid, NiMH, Li-ion technologies, and much more. Key coverage includes issues that can affect electric vehicle performance, such as total battery capacity, battery charging and discharging, and battery temperature constraints. The author also explores electric vehicle performance, battery testing (15 core performance tests provided), lithium-ion batteries, fuel cells and hybrid vehicles. In order to make a practical electric vehicle, a thorough understanding of the operation of a set of batteries in a pack is necessary. Expertly written and researched, Electric Vehicle Battery Systems will prove invaluable to automotive engineers, electronics and integrated circuit design engineers, and anyone whose interests involve electric vehicles and battery systems. * Addresses cost and efficiency as key elements in the design process * Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies * Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies
Author(s): Sandeep Dhameja
Publisher: Newnes
Year: 2001
Language: English
Pages: 240
TABLE OF CONTENTS......Page 5
ACKNOWLEDGMENTS......Page 9
1 ELECTRIC VEHICLE BATTERIES......Page 11
ELECTRIC VEHICLE OPERATION......Page 12
Electronic Drive Systems......Page 13
INTRODUCTION TO ELECTRIC VEHICLE BATTERIES......Page 14
The Pb-Acid Battery......Page 16
The NiMH Battery......Page 18
The Li-ion Battery......Page 20
The Li-Polymer Battery......Page 23
FUEL CELL TECHNOLOGY......Page 24
CHOICE OF A BATTERY TYPE FOR ELECTRIC VEHICLES......Page 28
EFFECTS OF VRLA BATTERY FORMATION ON ELECTRIC VEHICLE PERFORMANCE......Page 33
ELECTRIC VEHICLE BODY AND FRAME......Page 34
EFFECTS OF CURRENT DENSITY ON BATTERY FORMATION......Page 35
Effects of Current Density on NiMH Battery Formation......Page 36
Effects of Electrode Oxidation on NiMH Battery Formation......Page 37
Effects of Elevated Temperatures on VRLA Battery Formation......Page 38
Activation and Formation of a NiMH Battery......Page 39
End of Formation of a VRLA Battery......Page 40
Failure Modes of VRLA......Page 41
BATTERY STORAGE......Page 45
Storage of a VRLA Battery......Page 46
Storage of an NiMH Battery......Page 47
THE LITHIUM-ION BATTERY......Page 49
TRACTION BATTERY PACK DESIGN......Page 51
BATTERY CAPACITY......Page 53
THE TEMPERATURE DEPENDENCE OF BATTERY CAPACITY......Page 54
STATE OF CHARGE OF A VRLA BATTERY......Page 56
Practical State-of-Charge Calculation......Page 59
CAPACITY DISCHARGE TESTING OF VRLA BATTERIES......Page 61
BATTERY CAPACITY RECOVERY......Page 63
DEFINITION OF NIMH BATTERY CAPACITY......Page 64
NiMH Battery Voltage During Discharge......Page 66
LI-ION BATTERY CAPACITY......Page 68
BATTERY CAPACITY TESTS......Page 70
ENERGY BALANCES FOR THE ELECTRIC VEHICLE......Page 74
Transmission Inefficiencies......Page 76
Power Losses Due to System Controller/Engine Inefficiency......Page 77
Power from a System Controller/Engine......Page 78
CHARGE COMPLETION OF A SINGLE VRLA BATTERY......Page 79
Temperature Compensation......Page 80
Recharging a Series String of VRLA Batteries......Page 81
TEMPERATURE COMPENSATION DURING BATTERY CHARGING......Page 82
Temperature Sensing of Traction Battery Packs......Page 84
Temperature-Based Termination Methods......Page 88
ENVIRONMENTAL INFLUENCES ON CHARGING......Page 90
CHARGING METHODS FOR NIMH BATTERIES......Page 91
Advances in NiMH Charging......Page 95
Charging Stations......Page 97
Charging Methods......Page 99
Electrical Safety......Page 100
Connection Resistance......Page 101
Cell/Unit Internal Impedance/Conductance......Page 102
Equalizing Charge......Page 103
Battery Charging Parameters......Page 104
THE FAST CHARGING PROCESS......Page 105
FAST CHARGING STRATEGIES......Page 108
THE FAST CHARGER CONFIGURATION......Page 111
Fast Charging Prerequisites......Page 114
Limitations of Fast Charging......Page 115
Fast Charging and Battery Overcharge......Page 117
Fast Charging and Battery Degradation......Page 118
Fast Charging and the Electrical Utility......Page 120
INDUCTIVE CHARGINGÛMAKING RECHARGING EASIER......Page 121
Driving Range at the End of Day-1 Test......Page 123
ELECTRIC VEHICLE SPEEDOMETER CALIBRATION......Page 124
6 ELECTRIC VEHICLE BATTERY DISCHARGING......Page 125
DEFINITION OF VRLA BATTERY CAPACITY......Page 127
DEFINITION OF NIMH BATTERY CAPACITY......Page 129
Voltage During Discharge......Page 131
Discharge Rate......Page 132
Effect of Temperature......Page 133
Termination of Discharge......Page 134
DISCHARGE CHARACTERISTICS OF LI-ION BATTERY......Page 137
DISCHARGE OF AN ELECTRIC VEHICLE BATTERY PACK......Page 138
COLD-WEATHER IMPACT ON ELECTRIC VEHICLE BATTERY DISCHARGE......Page 140
THE BATTERY PERFORMANCE MANAGEMENT SYSTEM......Page 143
A Model of the BPMS......Page 145
The Typical BPMS Configuration......Page 146
BPMS THERMAL MANAGEMENT SYSTEM......Page 147
Design Analysis of the Battery Thermal Management System......Page 150
THE BPMS CHARGING CONTROL......Page 151
Protecting the Traction Battery Pack......Page 152
The BPMS Charge Indicator......Page 154
Depolarization as a Process to Enhance Charging......Page 156
Smart Battery and BPMS Diagnostics Control......Page 157
HIGH-VOLTAGE CABLING AND DISCONNECTS......Page 158
SAFETY IN BATTERY DESIGN......Page 160
Electrical Safety......Page 161
Mitigation of Intrinsic Materials Hazards......Page 162
BATTERY PACK SAFETYÛELECTROLYTE SPILLAGE AND ELECTRIC SHOCK......Page 163
Charging Stations......Page 165
Coupling Types......Page 166
Reliability/Durability Test......Page 167
Vehicle Endurance Test......Page 168
VENTILATION......Page 169
8 TESTING AND COMPUTER-BASED MODELING OF ELECTRIC VEHICLE BATTERIES......Page 171
Core Battery Performance Tests......Page 173
Variable Power Discharge Test......Page 174
Sustained Hill-Climb Power Test......Page 175
Fast Charge Test......Page 176
ACCELERATED RELIABILITY TESTING OF ELECTRIC VEHICLES......Page 177
BATTERY CYCLE LIFE VERSUS PEAK POWER AND REST PERIOD......Page 181
Thermal Management of the Electric Vehicle Battery......Page 182
Battery Test Recommendations......Page 183
The Thermal and Electrochemical Coupled Model......Page 186
SAFETY REQUIREMENTS FOR ELECTRIC VEHICLE BATTERIES......Page 198
FUEL CELL PROCESSING TECHNOLOGY FOR TRANSPORTATION APPLICATIONS: STATUS AND PROSPECTS......Page 201
COMPARISON OF FUEL CELL TECHNOLOGIES......Page 208
FUEL-CELL EMISSIONS......Page 211
POLICY DIRECTIVES FOR CLEAN AIR ACT......Page 212
RECOMMENDATIONS......Page 213
VEHICLE BATTERY CHARGING CHECKLIST/LOG......Page 215
DAY 1/2/3 RANGE AND CHARGE TEST LOG......Page 217
SPEEDOMETER CALIBRATION TEST DATA LOG......Page 219
ELECTRIC VEHICLE PERFORMANCE TEST SUMMARY......Page 221
BIBLIOGRAPHY......Page 225
INDEX......Page 231