This is the first book solely devoted to the Einstein relation in compound semiconductors and their nanostructures. The materials considered are nonlinear optical, III-V, ternary, quaternary, II-VI, IV-VI, Bismuth, stressed compounds, quantum wells, quantum wires, nipi structures, carbon nanotubes, heavily doped semiconductors, inversion layers, superlattices of nonparabolic materials with graded interfaces under magnetic quantization, quantum wire superlattices with different band structures and other field assisted systems. The influence of light on the Einstein relation in semiconductors and their nanostructures has also been investigated in detail by formulating the respective dispersion relations which control the transport in such quantum effect devices. The book deals with many open research problems.
Author(s): Kamakhya Prasad Ghatak, Sitangshu Bhattacharya, Debashis De
Edition: 1
Year: 2008
Language: English
Pages: 478
3540795561......Page 1
Contents......Page 12
1.1 Introduction......Page 22
1.2 Generalized Formulation of the Einstein Relation for Multi-Band Semiconductors......Page 23
1.3 Suggestions for the Experimental Determination of the Einstein Relation in Semiconductors Having Arbitrary Dispersion Laws......Page 25
1.4 Summary......Page 28
References......Page 29
2.1.1 Introduction......Page 33
2.1.2 Theoretical Background......Page 34
2.1.3 Special Cases for III–V Semiconductors......Page 36
2.1.4 Result and Discussions......Page 39
2.2.1 Introduction......Page 46
2.2.2 Theoretical Background......Page 47
2.2.3 Result and Discussions......Page 48
2.3.2 Theoretical Background......Page 49
2.3.3 Result and Discussions......Page 53
2.4.2 Theoretical Background......Page 54
2.5.1 Introduction......Page 55
2.5.2 Theoretical Background......Page 56
2.5.3 Result and Discussions......Page 57
2.7 Open Research Problems......Page 58
References......Page 68
3.1 Introduction......Page 71
3.2.1 Tetragonal Materials......Page 72
3.2.2 Special Cases for III–V, Ternary and Quaternary Materials......Page 76
3.2.3 II–VI Semiconductors......Page 83
3.2.4 The Formulation of DMR in Bi......Page 85
3.2.6 Stressed Kane Type Semiconductors......Page 95
3.3 Result and Discussions......Page 97
3.4 Open Research Problems......Page 115
References......Page 124
4.1 Introduction......Page 126
4.2.1 Tetragonal Materials......Page 127
4.2.2 Special Cases for III–V, Ternary and Quaternary Materials......Page 131
4.2.3 II–VI Semiconductors......Page 135
4.2.4 The Formulation of DMR in Bi......Page 137
4.2.6 Stressed Kane Type Semiconductors......Page 146
4.3 Result and Discussions......Page 149
4.4 Open Research Problems......Page 169
References......Page 174
5.1 Introduction......Page 176
5.2.1 Tetragonal Materials......Page 177
5.2.2 Special Cases for III–V, Ternary and Quaternary Materials......Page 178
5.2.3 II–VI Semiconductors......Page 181
5.2.4 The Formulation of 2D DMR in Bismuth......Page 182
5.2.5 IV–VI Materials......Page 188
5.2.6 Stressed Kane Type Semiconductors......Page 192
5.3 Result and Discussions......Page 193
5.4 Open Research Problems......Page 208
References......Page 214
6.1 Introduction......Page 216
6.2.1 Tetragonal Materials......Page 217
6.2.2 Special Cases for III–V, Ternary and Quaternary Materials......Page 218
6.2.3 II–VI Materials......Page 221
6.2.4 The Formulation of 1D DMR in Bismuth......Page 222
6.2.5 IV–VI Materials......Page 226
6.2.6 Stressed Kane Type Semiconductors......Page 229
6.2.7 Carbon Nanotubes......Page 230
6.3 Result and Discussions......Page 231
6.4 Open Research Problems......Page 246
References......Page 250
7.1 Introduction......Page 253
7.2.1 Formulation of the Einstein Relation in n-Channel Inversion Layers of Tetragonal Materials......Page 254
7.2.2 Formulation of the Einstein Relation in n-Channel Inversion Layers of III–V, Ternary and Quaternary Materials......Page 259
7.2.3 Formulation of the Einstein Relation in p-Channel Inversion Layers of II–VI Materials......Page 266
7.2.4 Formulation of the Einstein Relation in n-Channel Inversion Layers of IV–VI Materials......Page 268
7.2.5 Formulation of the Einstein Relation in n-Channel Inversion Layers of Stressed III–V Materials......Page 273
7.3 Result and Discussions......Page 278
7.4 Open Research Problems......Page 290
References......Page 295
8.1 Introduction......Page 297
8.2.1 Formulation of the Einstein Relation in Nipi Structures of Tetragonal Materials......Page 298
8.2.2 Einstein Relation for the Nipi Structures of III–V Compounds......Page 299
8.2.3 Einstein Relation for the Nipi Structures of II–VI Compounds......Page 301
8.2.4 Einstein Relation for the Nipi Structures of IV–VI Compounds......Page 303
8.2.5 Einstein Relation for the Nipi Structures of Stressed Kane Type Compounds......Page 306
8.3 Result and Discussions......Page 307
8.4 Open Research Problems......Page 313
References......Page 316
9.1 Introduction......Page 318
9.2.1 Einstein Relation Under Magnetic Quantization in III–V Superlattices with Graded Interfaces......Page 319
9.2.2 Einstein Relation Under Magnetic Quantization in II–VI Superlattices with Graded Interfaces......Page 321
9.2.3 Einstein Relation Under Magnetic Quantization in IV–VI Superlattices with Graded Interfaces......Page 324
9.2.4 Einstein Relation Under Magnetic Quantization in HgTe/CdTe Superlattices with Graded Interfaces......Page 327
9.2.5 Einstein Relation Under Magnetic Quantization in III–V Effective Mass Superlattices......Page 329
9.2.6 Einstein Relation Under Magnetic Quantization in II–VI Effective Mass Superlattices......Page 331
9.2.7 Einstein Relation Under Magnetic Quantization in IV–VI Effective Mass Superlattices......Page 332
9.2.8 Einstein Relation Under Magnetic Quantization in HgTe/CdTe Effective Mass Superlattices......Page 333
9.2.9 Einstein Relation in III–V Quantum Wire Superlattices with Graded Interfaces......Page 335
9.2.10 Einstein Relation in II”VI Quantum Wire Superlattices with Graded Interfaces......Page 336
9.2.11 Einstein Relation in IV–VI Quantum Wire Superlattices with Graded Interfaces......Page 338
9.2.12 Einstein Relation in HgTe/CdTe Quantum Wire Superlattices with Graded Interfaces......Page 340
9.2.13 Einstein Relation in III–V Effective Mass Quantum Wire Superlattices......Page 341
9.2.14 Einstein Relation in II–VI Effective Mass Quantum Wire Superlattices......Page 343
9.2.15 Einstein Relation in IV–VI Effective Mass Quantum Wire Superlattices......Page 344
9.2.16 Einstein Relation in HgTe/CdTe Effective Mass Quantum Wire Superlattices......Page 345
9.3 Result and Discussions......Page 346
9.4 Open Research Problems......Page 350
References......Page 356
10.1 Introduction......Page 357
10.2.1 The Formulation of the Electron Dispersion Law in the Presence of Light Waves in III–V, Ternary and Quaternary Materials......Page 358
10.2.2 The Formulation of the DMR in the Presence of Light Waves in III–V, Ternary and Quaternary Materials......Page 368
10.3 Result and Discussions......Page 370
10.4 The Formulation of the DMR in the Presence of Quantizing Magnetic Field Under External Photo-Excitation in III–V, Ternary and Quaternary Materials......Page 376
10.5 Theoretical Background......Page 377
10.6 Result and Discussions......Page 379
10.8 Theoretical Background......Page 388
10.9 Result and Discussions......Page 392
10.10 The Formulation of the DMR for the Ultrathin Films of III–V, Ternary and Quaternary Materials Under External Photo-Excitation......Page 395
10.11 Result and Discussions......Page 403
10.12 The Formulation of the DMR in QWs of III–V, Ternary and Quaternary Materials Under External Photo-Excitation......Page 405
10.13 Result and Discussions......Page 414
10.14 Summary......Page 417
10.15 Open Research Problem......Page 418
References......Page 423
11.1 Introduction......Page 429
11.2.1 Study of the Einstein Relation in Heavily Doped Tetragonal Materials Forming Gaussian Band Tails......Page 430
11.2.2 Study of the Einstein Relation in Heavily Doped III–V, Ternary and Quaternary Materials Forming Gaussian Band Tails......Page 439
11.2.3 Study of the Einstein Relation in Heavily Doped II–VI Materials Forming Gaussian Band Tails......Page 442
11.2.4 Study of the Einstein Relation in Heavily Doped IV–VI Materials Forming Gaussian Band Tails......Page 444
11.2.5 Study of the Einstein Relation in Heavily Doped Stressed Materials Forming Gaussian Band Tails......Page 448
11.3 Result and Discussions......Page 451
11.4 Open Research Problems......Page 455
References......Page 463
12. Conclusion and Future Research......Page 465
T......Page 468
E......Page 469
N......Page 470
Z......Page 471