Что такое математика

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Книга написана крупным математиком Рихардом Курантом в соавторстве с Гербертом Роббинсом. Она призвана сократить разрыв между математикой, которая преподается в школе, и наиболее живыми и важными для естествознания и техники разделами современной математической науки. Начиная с элементарных понятий, читатель движется к важным областям современной науки. Книга написана доступным языком и является классикой популярного жанра в математике.
Книга предназначена для школьников, студентов, преподавателей, а также для всех интересующихся развитием математики и ее структурой.
Предыдущее издание вышло в 2013 г.

Author(s): Курант Р., Роббинс Г.
Publisher: МЦНМО
Year: 2015

Language: Russian
Pages: 0

Предисловие к изданию на русском языке
К русскому читателю
Предисловие
Как пользоваться книгой
Что такое математика?
Натуральные числа
Введение
Операции над целыми числами
Бесконечность системы натуральных чисел. Математическая индукция
Дополнение к главе I. Теория чисел
Математическая числовая система
Введение
Рациональные числа
Несоизмеримые отрезки. Иррациональные числа, пределы
Замечания из области аналитической геометрии
Математический анализ бесконечного
Комплексные числа
Алгебраические и трансцендентные числа
Дополнение к главе II. Алгебра множеств
Геометрические построения. Алгебра числовых полей
Введение
Доказательства невозможности и алгебра
Основные геометрические построения
Числа, допускающие построение, и числовые поля
Неразрешимость трех классических проблем
Различные методы выполнения построений
Геометрические преобразования. Инверсия
Построения с помощью других инструментов. Построения Маскерони с помощью одного циркуля
Еще об инверсии и ее применениях
Проективная геометрия. Аксиоматика. Неевклидовы геометрии
Введение
Основные понятия
Двойное отношение
Параллельность и бесконечность
Применения
Аналитическое представление
Задачи на построение с помощью одной линейки
Конические сечения и квадрики
Аксиоматика и нееклидова геометрия
Приложение. Геометрия в пространствах более чем трех измерений
Топология
Введение
Формула Эйлера для многогранников
Топологические свойства фигур
Другие примеры топологических теорем
Топологическая классификация поверхностей
Приложение
Функции и пределы
Введение
Независимое переменное и функция
Пределы
Пределы при непрерывном приближении
Точное определение непрерывности
Две основные теоремы о непрерывных функциях
Некоторые применения теоремы Больцано
Дополнение к главе VI. Дальнейшие примеры на пределы и непрерывность
Максимумы и минимумы
Введение
Задачи из области элементарной геометрии
Общий принцип, которому подчинены экстремальные задачи
Стационарные точки и дифференциальное исчисление
Треугольник Шварца
Проблема Штейнера
Экстремумы и неравенства
Существование экстремума. Принцип Дирихле
Изопериметрическая проблема
Экстремальные проблемы с граничными условиями. Связь между проблемой Штейнера и изопериметрической проблемой
Вариационное исчисление
Экспериментальные решения задач на минимум. Опыты с мыльными пленками
Математический анализ
Введение
Интеграл
Производная
Техника дифференцирования
Обозначения Лейбница и «бесконечно малые»
Основная теорема анализа
Показательная (экспоненциальная) функция и логарифм
Дифференциальные уравнения
Дополнение к главе VIII
Приложение. Дополнительные замечания. Задачи и упражнения

Добавление 2. О создании книги «Что такое математика?»
Рекомендуемая литература
Предметный указатель