This textbook deals with tensors that are treated as vectors. Coverage details such new tensor concepts as the rotation of tensors, the transposer tensor, the eigentensors, and the permutation tensor structure. The book covers an existing gap between the classic theory of tensors and the possibility of solving tensor problems with a computer. A complementary computer package, written in Mathematica, is available through the Internet.
Author(s): Enrique Castillo, Juan Ramon Ruiz-Tolosa
Series: Universitext
Edition: 1st
Publisher: Springer
Year: 2005
Language: German
Pages: 550
From Vectors to Tensors......Page 2
Preface......Page 5
Contents......Page 7
Part I Basic Tensor Algebra......Page 15
1 Tensor Spaces......Page 16
2 Introduction to Tensors......Page 45
3 Homogeneous Tensors......Page 59
4 Change-of-basis in Tensor Spaces......Page 76
5 Homogeneous Tensor Algebra: Tensor Homomorphisms......Page 121
Part II Special Tensors......Page 197
6 Symmetrie Homogeneous Tensors: Tensor Algebras......Page 198
7 Anti-symmetric Homogeneous Tensors, Tensor and Inner Product Algebras......Page 233
8 Pseudotensors; Modular, Relative or Weighted Tensors......Page 276
Part III Exterior Algebras......Page 320
9 Exterior Algebras: Totally Anti-symmetric Homogeneous Tensor Algebras......Page 321
10 Mixed Exterior Algebras......Page 392
Part IV Tensors over Linear Spaces with Inner Product......Page 416
11 Euclidean Homogeneous Tensors......Page 417
12 Modular Tensors over En(R) Euclidean Spaces......Page 514
13 Euclidean Exterior Algebra......Page 531
Part V Classic Tensors in Geometry and Mechanics......Page 580
14 Affine Tensors......Page 581
References......Page 659
Index......Page 663
Universitext......Page 671
WebPage......Page 675