Теория полугрупп стала в последние годы одной из активно разрабатываемых областей общей алгебры, однако монографическая литература по ней почти отсутствует. Авторы проделали огромную работу по отбору материала, последовательно и ясно изложили многие вопросы алгебраической теории полугрупп. Тщательно подобранные упражнения содержат результаты, не вошедшие в основной текст. В первом томе описаны основные свойства полугрупп, их представления матрицами над группой с нулем и над полем, а также разложения полугрупп. Этот капитальный двухтомный труд, несомненно, окажется полезен математикам, интересующимся современной алгеброй, и для многих из них станет настольной книгой. Он будет также полезен преподавателям, аспирантам и студентам университетов и пединститутов.
Author(s): А.Клиффорд, Г. Престон
Publisher: Мир
Year: 1972
Language: Russian
Pages: 288
Tags: Математика;Общая алгебра;Теория групп;
Титул ......Page 5
Предисловие редактора перевода ......Page 6
Предисловие к русскому изданию ......Page 10
Предисловие ......Page 12
§ 1.1. Основные определения ......Page 16
§ 1.2. Тест ассоциативности по Лайту ......Page 24
§ 1.3. Сдвиги и регулярные представления ......Page 26
§ 1.4. Полугруппа отношений на множестве ......Page 32
§ 1.5. Конгруэнции, факторгруппоиды и гомоморфизмы ......Page 35
§ 1.6. Циклические полугруппы ......Page 39
§ 1.7. Обратимые элементы и максимальные подгруппы ......Page 42
§ 1.8. Связки и полуструктуры; связки полугрупп ......Page 45
§ 1.9. Регулярные элементы; инверсные полугруппы ......Page 49
§ 1.10. Вложение полугрупп в группы ......Page 58
§ 1.11. Правые группы ......Page 61
§ 1.12. Свободные полугруппы и определяющие соотношения. Бициклическая полугруппа ......Page 66
§ 2.1. Отношения Грина ......Page 73
§ 2.2. Д-строение полной полугруппы преобразований Гх на множестве X ......Page 78
§ 2.3. Регулярные Д-классы ......Page 87
§ 2.4. Группа Шютценберже Д-класса ......Page 94
§ 2.5. 0-минимальные идеалы и 0-простые полугруппы ......Page 98
§ 2.6. Главные факторы полугруппы ......Page 104
§ 2.7. Вполне 0-простые полугруппы ......Page 110
Глава 3. Представления матрицами над группой с нулем ......Page 122
§ 3.1. Полугруппы матричного типа над группой с нулем ......Page 123
§ 3.2. Теорема Риса ......Page 129
§ 3.3. Группоиды Брандта ......Page 138
§ 3.4. Гомоморфизмы регулярных рисовских полугрупп матричного типа ......Page 143
§ 3.5. Представления Шютценберже ......Page 151
§ 3.6. Точное представление регулярной полугруппы ......Page 159
§ 4.1. Теория Круазо разложений полугруппы ......Page 164
§ 4.2. Полугруппы, являющиеся объединениями групп ......Page 170
§ 4.3. Разложение коммутативной полугруппы на архимедовы компоненты; сепаративные полугруппы ......Page 176
§ 4.4. Расширения полугрупп ......Page 183
§ 4.5. Расширения группы при помощи вполне 0-простой полугруппы; эквивалентность расширений ......Page 190
Глава 5. Представления матрицами над полем ......Page 197
§ 5.1. Представления полупростых алгебр конечной размерности ......Page 198
§ 5.2. Полугрупповые алгебры ......Page 209
§ 5.3. Главные неприводимые представления полугруппы ......Page 223
§ 5.4. Представление вполне 0-простых полугрупп ......Page 232
§ 5.5. Характеры коммутативных полугрупп ......Page 252
Приложение. Краткое изложение статьи Сушкевича [1928] ......Page 269
Библиография ......Page 271
Указатель обозначений ......Page 280
Предметный указатель ......Page 282
Оглавление ......Page 285
Выходные данные ......Page 288