Dynamics of Materials: Experiments, Models and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Dynamics of Materials: Experiments, Models and Applications addresses the basic laws of high velocity flow/deformation and dynamic failure of materials under dynamic loading. The book comprehensively covers different perspectives on volumetric law, including its macro-thermodynamic basis, solid physics basis, related dynamic experimental study, distortional law, including the rate-dependent macro-distortional law reflecting strain-rate effect, its micro-mechanism based on dislocation dynamics, and dynamic experimental research based on the stress wave theory. The final section covers dynamic failure in relation to dynamic damage evolution, including the unloading failure of a crack-free body, dynamics of cracks under high strain-rate, and more.

Author(s): Lili Wang, Liming Yang, Xinlong Dong, Xiquan Jiang
Publisher: Academic Press
Year: 2019

Language: English
Pages: 0

Cover......Page 1
Dynamics of Materials: Experiments, Models and
Applications
......Page 2
Copyright......Page 3
Preface for English Edition......Page 4
One - Introduction......Page 7
1.2 Intensive loading......Page 10
1.3 High strain rate......Page 11
Part 1:
Volumetric deformation law of dynamic constitutive relation of materials......Page 14
2.1 Nonlinear elastic volumetric deformation law......Page 16
2.1.1 Bridgman equation......Page 18
2.1.2 Murnaghan equation......Page 20
2.2 Thermodynamic equation of state......Page 21
2.2.2 Gibbs free energy G(T,P)......Page 27
2.3 Grüneisen Equation of state......Page 31
3.1 Introduction......Page 40
3.2 Crystal structure......Page 41
4.3 High-pressure technique for shock waves......Page 124
3.3.1 Ionic binding......Page 47
3.3.2 Covalent binding......Page 48
7.1.3 Discussion on the assumption of “one-dimensional stress state in bars”......Page 49
3.3.4 Molecular binding......Page 50
3.4 The binding force and binding energy of crystals......Page 51
3.5 Lattice thermal vibration......Page 60
3.5.1 Optical branch......Page 70
3.5.2 Acoustic branch......Page 71
3.5.3 The Einstein model......Page 79
3.5.4 The Debye model......Page 81
3.6 The solid physical foundation of the Grüneisen equation of state......Page 89
4.1 Basic theory of shock waves......Page 99
4.1.1 The P–V Hugoniot curves......Page 105
4.1.3 The D–u Hugoniot curves......Page 109
4.2 Interaction, reflection, and transmission of shock waves in solids under high pressures......Page 114
4.4.1 Shock adiabatic curve in the D–u form......Page 134
4.4.2 Shock adiabatic curve in the P–u form......Page 135
4.4.3 Analytical expression of shock adiabatic curve in the P–V form......Page 142
4.5 Determination of equation of state of solids under high pressures......Page 148
4.6 Shock phase transition......Page 153
Part 2:
Distortion law of the dynamic constitutive relationship of materials......Page 159
5.1.1 Strain-rate effect......Page 161
10.1 Adiabatic shearing......Page 495
5.1.2 Combined effects of strain rate and temperature and rate–temperature equivalence......Page 170
9.1.3 Dynamic stress intensity factor of stationary crack under stress wave loading......Page 402
5.2 Viscoplastic constitutive equations (phenomenological models)......Page 182
5.2.1 Cowper–Symonds equation......Page 183
5.2.2 Johnson–Cook (J–C) equation......Page 186
5.2.3 Sokolovsky–Malvern–Perzyna equation......Page 190
5.2.4 Bodner–Parton equation......Page 195
5.3 Nonlinear viscoelastic constitutive equations under high strain rates......Page 200
5.3.1 Nonlinear viscoelastic constitutive equation (Zhu–Wang–Tang equation)......Page 202
5.3.2 Nonlinear thermoviscoelastic constitutive equation and rate–temperature equivalence......Page 210
5.4 Constitutive model under one-dimensional strain......Page 218
6.1 Theoretical shear strength......Page 224
6.2.1 Introduction of dislocation concept......Page 229
6.2.2 Experimental observation of dislocations......Page 231
10.1.3 Temperature relativity of adiabatic shearing......Page 232
6.3 Dislocation dynamics......Page 240
6.3.1 Orowan equation......Page 241
6.3.2 Experimental study of dislocation velocity......Page 242
6.3.3 Short-range barrier and long-range barrier......Page 244
6.3.4 Thermally activated mechanism......Page 247
6.4 Thermoviscoplastic constitutive equation based on dislocation dynamics......Page 249
6.4.1 Rectangular potential Barrier—Seeger's model......Page 251
6.4.2 Nonlinear potential barrier—Davidson–Lindholm model......Page 253
6.4.3 Nonlinear potential barrier—Kocks–Argon–Ashby model......Page 254
6.4.4 Nonlinear potential barrier—spectrum of hyperbolic barriers......Page 255
6.4.4.1 Spectrum of hyperbolic barriers......Page 258
6.4.4.2 Experiment verification of the hyperbolic barrier model......Page 260
6.4.5 Zerilli–Armstrong model......Page 264
6.4.6 Mechanical threshold stress model......Page 268
Seven - Dynamic experimental study on the distortional law of materials......Page 276
7.1 The Split Hopkinson Pressure Bar technique......Page 279
7.1.1 The basic principle of SHPB......Page 281
7.1.2 Split Hopkinson bar experiments under different stress states......Page 286
7.1.4 Discussion on the assumption of uniform distribution of stress/strain along the specimen length......Page 308
7.1.5 SHPB experiment on soft materials with low wave impedance......Page 318
7.2 Wave propagation inverse analysis experimental technique......Page 328
7.2.1 Taylor bar......Page 330
7.2.2 The classic Lagrangian inverse analysis......Page 331
7.2.3 Modified Lagrangian inverse analysis......Page 333
Part 3:
Dynamic failure of materials......Page 345
Nine -
Crack dynamics and fragmentation......Page 351
8.1.2 Spalling criterion......Page 363
8.1.2.1 Maximum normal tensile stress criterion......Page 364
8.1.2.2 Tensile stress-rate criterion and tensile stress-gradient criterion......Page 365
8.1.2.3 Damage accumulation criterion......Page 367
8.1.3 Experimental measurement of spalling strength......Page 369
8.2 Erosion......Page 376
8.2.1 Erosion—unloading failure induced by Rayleigh surface wave......Page 377
9.1.1 Basic knowledge of crack statics......Page 390
9.1.1.1 Griffith's energy approach—energy release rate criterion......Page 393
9.1.1.2 Irwin's force field approach—stress intensity factor criterion......Page 395
9.1.2 Fundamental concepts of crack dynamics......Page 399
9.1.2.1 On dynamic structure response of crack bodies......Page 400
9.1.2.2 On the dynamic material response of crack bodies......Page 401
10.1.4 Macroscopic constitutive instability criteria for adiabatic shearing......Page 407
9.1.5 Kinetic energy and limiting propagating speed of moving crack......Page 418
9.1.5.1 Kinetic energy of propagating cracks......Page 419
9.1.5.2 Limiting crack propagating speed......Page 422
9.1.6 Crack mechanical field near crack tip of propagating crack......Page 424
9.1.7 Dynamic crack growth toughness......Page 429
9.1.8.1 Branching/bifurcation......Page 433
9.1.8.2 Dynamic crack arrest......Page 436
9.1.9 Experimental techniques for crack dynamics......Page 444
9.1.9.1 Loading technique......Page 445
9.1.9.2 Measurement technique......Page 452
9.2 Dynamic fragmentation......Page 463
9.2.1 Dynamic fragmentation phenomenon......Page 464
9.2.2 Dynamic fragmentation theory......Page 470
9.2.2.1 Grady–Kipp cohesive fracture model......Page 475
9.2.2.2 Glenn–Chudnovsky model......Page 479
9.2.2.3 Zhou Fenghua et al. model......Page 480
9.2.2.4 Fragment size distribution law......Page 483
9.2.3 Experimental study on fragmentation of ring and cylinder shell......Page 486
10.1.1 Microstructure of adiabatic shear band—deformed band and transformed band......Page 499
10.1.2 Strain and strain rate relativity of adiabatic shearing......Page 503
10.1.5 Interaction between adiabatic shear band and crack......Page 528
10.2 Dynamic evolution of damage......Page 534
10.2.1 Statistical meso-damage model—NAG model......Page 536
10.2.2 Macroscopic continuum damage and thermal activated damage evolution model......Page 546
10.2.3 Coupling of macrocontinuum damage evolution with rate-dependent constitutive flow/deformation......Page 552
References......Page 564
Further reading......Page 584
B......Page 585
C......Page 586
D......Page 587
F......Page 589
I......Page 590
L......Page 591
N......Page 592
P......Page 593
S......Page 594
T......Page 596
V......Page 597
Z......Page 598
Back Cover......Page 599