The Analogue-to-digital converter (ADC) is the most pervasive block in electronic systems. With the advent of powerful digital signal processing and digital communication techniques, ADCs are fast becoming critical components for system’s performance and flexibility. Knowing accurately all the parameters that characterise their dynamic behaviour is crucial, on one hand to select the most adequate ADC architecture and characteristics for each end application, and on the other hand, to understand how they affect performance bottlenecks in the signal processing chain. Dynamic Characterisation of Analogue-to-Digital Converters presents a state of the art overview of the methods and procedures employed for characterising ADCs’ dynamic performance behaviour using sinusoidal stimuli. The three classical methods – histogram, sine wave fitting, and spectral analysis – are thoroughly described, and new approaches are proposed to circumvent some of their limitations. This is a must-have compendium, which can be used by both academics and test professionals to understand the fundamental mathematics underlining the algorithms of ADC testing, and as an handbook to help the engineer in the most important and critical details for their implementation.
Author(s): Dominique Dallet, Jose Machado da Silva
Series: Kluwer international series in engineering and computer science 860
Edition: 1
Publisher: Springer
Year: 2005
Language: English
Pages: 291
Contents......Page 6
Preface......Page 9
Contributing Authors......Page 10
Introduction......Page 13
Glossary......Page 15
Part I: ADC Characterisation Based on Sinewave Analysis......Page 19
1. Introduction......Page 20
2. ADCs' applications......Page 22
3. ADCs' architectures......Page 27
4. Terminology......Page 32
5. Quantisation and A/D conversion......Page 37
6. Output coding......Page 44
7. Errors, nonlinearity, noise, and distortion......Page 48
8. Data acquisition and processing......Page 57
9. Input characteristics......Page 60
1. Test Setup description......Page 63
2. Specification of the clock and input signal......Page 65
3. Example of filter specification......Page 72
4. Filter selection......Page 73
5. Taking a record of data......Page 75
1. Introduction......Page 77
3. Definitions......Page 78
4. The fixedfrequency method......Page 79
5. The fourparameter method......Page 81
6. Definitions of THD and SNR......Page 86
7. The multiharmonic sinewave fitting method......Page 87
8. Estimation of the normalised angular frequency......Page 89
9. Estimation of the linear parameters......Page 90
10. On the rank of E[sub(P)]......Page 91
11. The algorithm......Page 92
12. Multitone test to circumvent signal purity problems......Page 93
1. Discrete Fourier Transform and Fast Fourier Transform......Page 101
3. Windowing......Page 102
4. Comment on the accuracy of the input frequency......Page 104
5. Record size......Page 106
6. Calculation of ADC dynamic parameters in the frequency domain......Page 108
1. Introduction......Page 120
2. The sampling strategy and its contribution to count variance and measurement uncertainty......Page 123
3. Additional contributions to count uncertainty: additive noise and jitter......Page 130
4. Factors affecting the p.d.f. of the input signal......Page 137
5. Required record length and number of records, expression of measurement uncertainty......Page 148
6. Choice of the coverage factor......Page 154
7. Comparing the number of samples required by random and by synchronous sampling......Page 156
8. Determining the transfer characteristic......Page 157
9. Offset error and gain......Page 158
10. Linearity errors......Page 162
11. Appendix......Page 163
1. Introduction......Page 172
2. General considerations......Page 174
3. Simulation results......Page 189
4. ATE Implementation......Page 202
5. Conclusions......Page 228
Part II: Measurement of Additional Parameters......Page 231
1. Introduction......Page 232
2. The double beat technique......Page 233
3. The joint probability technique......Page 243
4. Conclusion......Page 246
1. Introduction......Page 247
2. Test setup and hardware requirements......Page 248
3. Analysis......Page 249
4. Test results......Page 252
5. Calculation of differential gain and phase from the test results......Page 253
1. Introduction......Page 255
2. Settling time and transition duration of step response......Page 257
3. Frequency response measurement......Page 261
1. Introduction......Page 267
2. Test conditions......Page 268
3. A practical case......Page 269
4. Collection of samples in H[sub(C↑)] and H[sub(C↓)]......Page 270
5. Some warning......Page 272
References......Page 277
M......Page 290
W......Page 291