Distributed Vision: From Simple Sensors to Sophisticated Combination Eyes

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This volume explores the diversity of distributed eyes and other unusual visual systems in nature.  It compares the unique themes of optics, neural processing, and behavioral control that emerge from these visual systems with more-canonical eyes. This volume attempts to answer a number of questions about distributed visual systems. What are distributed visual systems good for, how do they function, and why have they arisen independently in so many phyla? Why are eye designs and visual system arrangements much more diverse in invertebrates? Each chapter includes an overview of the visual systems that exist in their group of animals, relates vision to ecology, and takes a comparative approach. 

Author(s): Elke Buschbeck, Michael Bok
Series: Springer Series in Vision Research
Publisher: Springer
Year: 2023

Language: English
Pages: 318
City: Cham

Preface
Contents
Chapter 1: On Distributed Visual Systems
1.1 Introduction
1.2 From a Simple Light Sensor to a Sophisticated Eye
1.3 Sophisticated Vision Through a Distributed Visual System
1.4 Pros and Cons of Distributed Vision (Or “To Evolve a Centralized or Distributed Visual System”)
1.5 Survey of Diverse Distributed Visual Systems
1.5.1 Cnidarians
1.5.2 Echinoderms (Deuterostomes)
1.5.3 Polychaetes (Annelida)
1.5.4 Bivalvia (Mollusks)
1.5.5 Chitons (Mollusks)
1.5.6 Myriapoda (Arthropoda)
1.5.7 Pancrustacea (Arthropoda)
1.5.8 Arachnida (Arthropoda)
1.6 Summary/Conclusions
References
Chapter 2: Cnidarians: Diversity and Evolution of Cnidarian Visual Systems
2.1 Introduction
2.2 Cnidarian Phylogenetic Relationships
2.3 Cnidarian Photobiology
2.3.1 Cnidarian Opsins
2.3.2 Cnidarian Phototransduction and the Origins of Metazoan Visual Cascades
2.3.3 Cnidarian Photoreceptor Neurons and Distributed Sensory Systems
2.3.4 Cnidarian Eyes
2.3.5 Distributed Visual Systems in Cnidarians
2.4 Photosensory Behaviors in Cnidarian Larvae
2.4.1 Anthozoan Larvae
2.4.2 Medusozoan Larvae
2.5 Photosensory Behaviors in Adult Cnidarians
2.5.1 Anthozoan Adults
2.5.2 Medusozoan Adults
2.6 Future Directions
References
Chapter 3: Extraocular Vision in Echinoderms
3.1 Introduction
3.2 A Brief History of Extraocular Photoreception and Vision in Echinoderms
3.3 Visual Behavior
3.3.1 Orientation to Static Stimuli
3.3.2 Shadows and Looms
3.4 Physiology
3.4.1 Sea Urchins
3.4.2 Brittle Stars
3.5 Photoreceptors
3.5.1 Molecular Characteristics
3.5.2 Sea Urchin Opsins
3.5.3 Brittle Star Opsins
3.5.4 Opsins Across Echinodermata
3.5.5 Retinal Determinant Genes and Transcription Factors
3.6 Achieving Spatial Resolution: Proposed Mechanisms
3.6.1 Screening
3.6.2 Limits of Resolution
3.6.3 Optics
3.7 Nervous Systems and Processing
3.8 Evolution of Extraocular Vision
3.9 Future Research and Challenges
References
Chapter 4: Dispersed Vision in Starfish: A Collection of Semi-independent Arms
4.1 Introduction
4.2 The Starfish Eyes
4.2.1 Low Pass Filtering in Starfish Eyes
4.2.2 Opsins and Spectral Sensitivity
4.3 Behavioral Repertoire of Starfish
4.4 Light Guided Behaviors
4.4.1 Shadow Response and Extraocular Photoreception
4.4.2 Visually Guided Habitat Detection: Proof of Image Forming Eyes
4.4.3 Eye Movements and Active Vision
4.4.4 Other Starfish Behaviors Putatively Involving Vision
4.5 Multimodal Control of Behavior
4.6 Processing of the Visual Information
4.6.1 Structure of the Starfish CNS
4.6.2 The Ectoneural Part of the RNC
4.6.3 Supporting Cells
4.6.4 Specializations in A. planci: Neural Bulbs on the RNC
4.7 Concluding Remarks
References
Chapter 5: Distributed Visual Systems in Pteriomorphian Bivalves
5.1 Introduction
5.2 The Eyes of Pteriomorphian Bivalves
5.2.1 Pectinida: Mirror-Based Eyes
5.2.1.1 Phylogenetic Distribution and General Description
5.2.1.2 Morphology and Optics of Mirror-Based Eyes
5.2.1.3 Cellular and Molecular Components of Mirror-Based Eyes
5.2.1.4 Development of Mirror-Based Eyes
5.2.2 Limida: Invaginated Eyes
5.2.2.1 Phylogenetic Distribution and General Description
5.2.2.2 Morphology of Invaginated Eyes
5.2.2.3 Cellular and Molecular Components of Invaginated Eyes
5.2.3 Ostreida: Cap Eyespots
5.2.4 Arcida: Compound Eyes and Pigmented Cups
5.2.4.1 Phylogenetic Distribution and General Description
5.2.4.2 Morphology and Components of Compound Eyes
5.2.4.3 Morphology and Components of Pigmented Cups
5.3 Visual Ecology of Pteriomorphian Bivalves
5.3.1 Visual Ecology of Scallops (Pectinida)
5.3.1.1 Visual Performance of the Mirror-Based Eyes of Scallops
5.3.1.2 Visually Influenced Behaviors of Scallops
5.3.2 Visual Ecology of File Clams (Limida)
5.3.3 Visual Ecology of Oysters (Ostreida)
5.3.4 Visual Ecology of Ark Clams (Arcida)
5.4 Neuroanatomy and Visual Processing in Pteriomorphia
5.4.1 Neuroanatomy of Scallops (Pectinida)
5.4.1.1 Neuroanatomical Structures of Pectinids
5.4.1.2 Visual Processing in Scallops
5.4.2 Neuroanatomy of File Clams (Limida)
5.4.3 Neuroanatomy of Oysters (Osterida)
5.4.4 Neuroanatomy of Ark Clams (Arcida)
5.5 Evolution of Distributed Visual Systems in Pteriomorphia
5.5.1 Why Do Some Pteriomorphian Bivalves Have Eyes When Many Do Not?
5.5.2 Why Do Pteriomorphian Bivalves Have so Many Mantle Eyes?
5.5.3 Why Do the Eyes of Pteriomorphians Tend to Include Two Different Types of Photoreceptors?
5.5.4 How Do Pteriomorphian Bivalves Process Visual Information?
5.5.5 Future Directions
References
Chapter 6: Distributed Light-Sensing Systems in Chitons
6.1 Introduction to Chitons
6.2 Structure and Function of Light-Sensing Organs in Chitons
6.2.1 Aesthetes
6.2.2 Eyespots
6.2.3 Shell Eyes
6.2.4 Other Light-Sensing Organs in Chitons
6.3 Light-Influenced Behaviors in Chitons
6.3.1 Light-Influenced Behaviors Observed Across Chitons
6.3.2 Light-Influenced Behaviors in Chitons with Eyespots
6.3.3 Light-Influenced Behaviors in Chitons with Shell Eyes
6.4 Neuroanatomy of Chitons
6.5 Function and Evolution of Distributed Visual Systems in Chitons
6.5.1 How Do Light-Sensing Structures Relate to Light-Influenced Behaviors in Chitons?
6.5.2 Do Ecological Factors Help Explain Why Some Chitons Have Eyes When Many Do Not?
6.5.3 How Do Chitons Process Visual Information?
6.6 Future Directions
References
Chapter 7: The Visual System of Myriapoda
7.1 Introduction
7.2 Ommatidial Ground Pattern and Diverging Pathways
7.2.1 Lateral Eyes in Scutigeromorpha (Chilopoda)
7.2.2 Lateral Eyes (Cup-Shaped Ommatidia) in Pleurostigmophora (Chilopoda)
7.2.3 Lateral Eyes in Penicillata (Diplopoda)
7.2.4 Lateral Eyes in Chilognatha (Diplopoda)
7.3 Eye Development
7.4 Visual Neuropils Associated with Lateral Eyes
7.5 Intracerebral Photoreceptors
7.6 Visual Ecology, Physiology, and Behavior
References
Chapter 8: Insect Dorsal Ocelli: A Brief Overview
8.1 Introduction
8.2 Ocellar Structure and Neuronal Organisation
8.2.1 Ocellar Lenses
8.2.2 Field of View
8.2.3 Focal Plane
8.2.4 Internal Organisation
8.2.5 Neuronal Connectivity
8.3 Function
8.3.1 Phototactic Organs
8.3.2 Timing of Activity
8.3.3 Flight Stabilisation
8.3.4 Orientation
8.4 Conclusions
References
Chapter 9: The Cornucopia of Copepod Eyes: The Evolution of Extreme Visual System Novelty
9.1 Introduction
9.2 Visually Mediated Behaviors
9.3 Visual Function
9.4 Copepod Eye Morphology – Overview
9.4.1 Retinular Cells
9.4.2 Pigment Cells
9.4.3 Lenses and Other Light-Refracting Structures
9.4.4 Light-Reflecting Structures
9.4.5 Nonvisual Copepod Light-Sensing Structures: Gicklhorn’s Organ
9.5 Evolutionary Diversity of Copepod Eyes
9.5.1 Platycopioida (No Eyes)
9.5.2 Calanoida
9.5.2.1 Phaennidae (Reflector Type)
9.5.2.2 Aetideidae (Enlarged Type – Paired Ocelli)
9.5.2.3 Pontellidae (Y-Eye Type)
9.5.2.4 Candaciidae (Enlarged Type)
9.5.2.5 Centropagidae (Enlarged Type – Unpaired Ocellus)
9.5.2.6 Acartiidae (Enlarged Type – Whole Eye)
9.5.3 Misophrioida (No Eyes)
9.5.4 Gelyelloida (No Eyes)
9.5.5 Cyclopoida
9.5.5.1 Thaumatopsyllidae (Y-Eye Type)
9.5.5.2 Cyclopidae (Enlarged Type – Paired Ocelli)
9.5.5.3 Ergasilida (Sapphirina, Corycaeus, and Copilia) (Telescopic Type)
9.5.6 Canuelloida
9.5.7 Harpacticoida
9.5.7.1 Miraciidae (Telescopic Type)
9.5.8 Mormonilloida (No Eyes)
9.5.9 Monstrilloida
9.5.10 Siphonostomatoida
9.5.10.1 Caligidae (Telescopic Type)
9.5.10.2 Pennellidae (Enlarged – Paired Ocelli)
9.6 Copepod Opsin Diversity
9.7 Conclusions
References
Chapter 10: Distributed Vision in Spiders
10.1 Why Spiders?
10.2 Jumping Spiders: A High-Performing, Compact Distributed Visual System
10.2.1 Vision-Based Behavior of Jumping Spiders
10.2.1.1 Methods for Studying Vision-Based Behavior in Jumping Spiders
10.2.1.2 Behavioral Contexts in Which Jumping Spiders Use Vision
10.2.2 Modular Vision: Two Eye Types
10.2.2.1 Secondary Eyes of Jumping Spiders
10.2.2.2 Principal Eyes of Jumping Spiders
10.2.2.3 Division of Labor in Jumping Spider Eyes
10.2.3 Next Steps in the Study of Salticid Vision
10.3 Distributed Visual Systems Across the Araneae
10.3.1 Vision-Based Behavior Across Spiders
10.3.2 Origin and Evolution of Spider Eyes
10.3.2.1 Origin and Development
10.3.2.2 Eye Arrangement and Visual Fields
10.3.3 Structure and Optical Performance of Eyes
10.3.3.1 Corneal Lens Properties
10.3.3.2 Resolution
10.3.3.3 Sensitivity
10.3.3.4 Secondary Eye Tapeta
10.3.3.5 Trade-Off Between Resolution and Sensitivity
10.3.3.6 Specializations of Retinal Anatomy
10.3.4 Physiological Specializations of Photoreceptors
10.3.4.1 Opsin Evolution
10.3.4.2 Temporal Resolution
10.3.4.3 Spectral Sensitivity
10.3.4.4 Polarization Sensitivity
10.3.5 Control and Cooperation of Eyes
10.3.5.1 Movable Principal-Eye Retinas
10.3.5.2 Interaction of Eyes
10.3.6 Neurobiology of Vision
10.3.6.1 Evolution of Spider Brains
10.3.6.2 Principal- and Secondary-Eye Pathways
10.3.6.3 Variation in Neuromorphology
10.4 Conclusions and Future Directions
References
Index