Dissociative Recombination of Molecular Ions

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Dissociative recombination (DR) of molecular ions with electrons is a complex, poorly understood molecular process. Its critical role as a neutralising agent in the Earth's upper atmosphere is now well established and its occurrence in many natural and laboratory produced plasma has been a strong motivation for studying the event. For the first time, theoretical concepts, experimental methodology and applications are united in one book, revealing the governing principles behind the gas-phase reaction. The book takes the reader through the intellectual challenges posed, describing in detail dissociation mechanisms, dynamics, diatomic and polyatomic ions and related processes, including dissociative excitation, ion pair formation and photodissociation. With the final chapter dedicated to applications in astrophysics, atmospheric science, plasma physics and fusion research, this is a focused, definitive guide to a fundamental molecular process. The book will appeal to academics within physics, physical chemistry and related sciences.

Author(s): Mats Larsson, Ann E. Orel
Series: Cambridge molecular science
Edition: 1
Publisher: Cambridge University Press
Year: 2008

Language: English
Pages: 392
City: Cambridge, UK; New York
Tags: Физика;Физика плазмы;

Cover......Page 1
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 9
Preface......Page 11
1.1 History 1900–1950......Page 13
1.2 History 1950–1970......Page 17
1.3 History 1970–1990......Page 19
1.4 History 1990–present......Page 22
2.1.1 Kinematics and resolution......Page 23
2.1.2 Cross section measurement......Page 33
2.1.3 Ion sources......Page 39
2.2 Ion storage rings......Page 42
2.2.1 Magnetic ion storage rings......Page 43
2.2.2 Electrostatic ion storage rings......Page 61
2.3 Stationary afterglow technique......Page 63
2.3.1 Rate coefficient measurements near 300 K......Page 66
2.3.2 Rate coefficient measurements as function of electron temperature......Page 68
2.4 Flowing afterglow technique......Page 71
2.4.1 Rate coefficient measurements......Page 74
2.4.2 Measurements of product state distributions and branching ratios......Page 78
2.5 Shock-tube technique......Page 80
3.1 Introduction......Page 82
3.2 What is a resonance?......Page 87
3.3 Formal resonance theory......Page 90
3.4 Resonance parameters and structure......Page 95
3.4.1 Complex Kohn variational method......Page 96
3.4.2 R-matrix method......Page 97
3.4.3 Structure methods......Page 98
3.5 Nonadiabatic couplings......Page 101
3.5.1 Direct calculation......Page 102
3.5.2 Quantum defect method......Page 103
3.6.1 Multichannel quantum defect theory......Page 105
3.6.2 Time-dependent wave packet method......Page 111
4 The H2+ molecule......Page 116
5.1 HeH+......Page 131
5.2 NeH+, ArH+, KrH+, and XeH+......Page 144
5.3 CH+......Page 145
5.4 NH+ and OH+......Page 151
5.5 LiH+......Page 152
6.1 Rare-gas dimer ions: He+2
, Ne+2
, Ar+2
, Kr+ , Xe+......Page 155
6.2.1 O2+......Page 166
6.2.2 N2+......Page 177
6.2.3 NO+......Page 183
6.3 Other diatomic ions......Page 192
7.1 History of H3+......Page 196
7.2.1 Experiment and theory until 1988......Page 198
7.2.2 Experiment and theory 1988-2000......Page 203
7.2.3 Ion storage rings: the high-energy peak......Page 208
7.2.4 Ion storage rings: ion-pair formation......Page 209
7.2.5 Ion storage rings: cross sections......Page 211
7.2.7 Ion storage rings: isotope effects......Page 212
7.2.8 Ion storage rings: vibrational excitations......Page 214
7.2.9 Ion storage rings: rotational excitations......Page 216
7.2.10 Ion storage rings: product branching ratios and breakup dynamics......Page 221
7.2.11 Theoretical studies......Page 228
7.2.12 Afterglow experiments since 2000, and discussion of the
afterglow results......Page 231
7.2.13 The rate coefficient’s dependence on electron temperature......Page 235
7.2.14 Summary and conclusions......Page 236
8.1 Dissociation dynamics in recombination ofXH+
2 ions (X = C, N, O, S, P)......Page 239
8.2.1 HCO+ and HCS+......Page 256
8.2.2 N2H+......Page 259
8.2.3 HCNH+, HCN+, HNC+......Page 262
8.2.4 H3O+......Page 269
8.2.5 C-O2+......Page 275
8.3 Cluster ions......Page 279
8.4.1 Cross sections and rate coefficients......Page 289
9 Related processes......Page 299
9.1 Dissociative excitation and ionization of molecular ions......Page 300
9.2 Ion-pair production......Page 306
9.3 Electron impact detachment of negative ions......Page 308
9.4 Electron–molecule scattering; dissociative attachment......Page 312
9.5 Photodissociation and photoionization......Page 320
10.1 Molecular astrophysics......Page 327
10.2 Atmospheric physics and chemistry......Page 331
10.3 Plasma physics and fusion research......Page 332
References......Page 333
Index......Page 389