Dilute Nitride Semiconductors

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

* This book contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field.

* It gives the reader easier access and better evaluation of future trends, Conveying important results and current ideas

* Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community.

The high speed lasers operating at wavelength of 1.3 µm and 1.55 µm are very important light sources in optical communications since the optical fiber used as a transport media of light has dispersion and attenuation minima, respectively, at these wavelengths. These long wavelengths are exclusively made of InP-based material InGaAsP/InP. However, there are several problems with this material system. Therefore, there has been considerable effort for many years to fabricate long wavelength laser structures on other substrates, especially GaAs. The manufacturing costs of GaAs-based components are lower and the processing techniques are well developed. In 1996 a novel quaternary material GaInAsN was proposed which could avoid several problems with the existing technology of long wavelength lasers.

In this book, several leaders in the field of dilute nitrides will cover the growth and processing, experimental characterization, theoretical understanding, and device design and fabrication of this recently developed class of semiconductor alloys. They will review their current status of research and development.

Dilute Nitrides (III-N-V) Semiconductors: Physics and Technology organises the most current available data, providing a ready source of information on a wide range of topics, making this book essential reading for all post graduate students, researchers and practitioners in the fields of Semiconductors and Optoelectronics

* This book contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field. * It gives the reader easier access and better evaluation of future trends, Conveying important results and current ideas * Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community.

Author(s): Mohamed Henini
Publisher: Elsevier Science
Year: 2005

Language: English
Pages: 648
Tags: Физика;Физика твердого тела;Физика полупроводников;

Cover......Page 1
Half Title Page......Page 2
Copyright......Page 3
Title Page......Page 4
Copyright......Page 5
Preface......Page 6
Contents......Page 8
1.1. INTRODUCTION......Page 19
1.2. MBE GROWTH OF DILUTE III–V NITRIDES......Page 21
1.3. DILUTE NITRIDE CHARACTERIZATION......Page 34
1.4. ENERGY BAND AND CARRIER TRANSPORT PROPERTIES......Page 84
1.5. ANNEALING AND N–In NEAREST NEIGHBOR EFFECTS......Page 86
1.6. SUMMARY......Page 98
REFERENCES......Page 99
2.1. INTRODUCTION......Page 111
2.2. EPITAXIAL GROWTH OF GaInAsN-BASED STRUCTURES......Page 112
2.3. LONG WAVELENGTH GaAs-BASED LASER PERFORMANCES......Page 123
2.4. CONCLUSION......Page 131
REFERENCES......Page 132
3.1. INTRODUCTION TO DILUTE NITRIDE SEMICONDUCTORS......Page 137
3.2. THE CHEMICAL BEAM EPITAXIAL/METALORGANIC MOLECULAR BEAM EPITAXIAL (CBE/MOMBE) GROWTH PROCESS......Page 138
3.3. CBE OF DILUTE NITRIDE SEMICONDUCTORS......Page 139
3.4. FUNDAMENTAL STUDIES OF GaNxAs(1-x) BAND STRUCTURE......Page 140
3.5. THE COMPOSITIONS AND PROPERTIES OF DILUTE NITRIDES GROWN BY CBE......Page 141
3.6. CBE-GROWN DILUTE NITRIDE DEVICES......Page 145
3.7. THE POTENTIAL FOR PRODUCTION CBE OF DILUTE NITRIDES......Page 150
REFERENCES......Page 151
4.1. INTRODUCTION......Page 155
4.2. MOMBE GROWTH AND CHARACTERIZATION OF GaAsN......Page 156
4.3. RELATION OF In AND N INCORPORATIONS IN THE GROWTH OF GaInNAs......Page 163
4.4. GROWTH AND CHARACTERIZATION OF GaAsNSe NEW ALLOY......Page 166
4.5. APPLICATION OF GaAsN TO InAs QUANTUM DOTS......Page 167
REFERENCES......Page 172
5.1. SELF-ORGANIZED QUANTUM DOTS......Page 175
5.2. DILUTE NITRIDE QUANTUM DOTS......Page 177
5.3. RECENT EXPERIMENTAL PROGRESS IN GaInNAs QDs......Page 179
5.5. SUMMARY AND FUTURE CHALLENGES IN DILUTE NITRIDE QDs......Page 191
REFERENCES......Page 192
6. Physics of Isoelectronic Dopants in GaAs......Page 197
6.1. NITROGEN ISOELECTRONIC IMPURITIES......Page 198
6.2. THE FAILURE OF THE VIRTUAL CRYSTAL APPROXIMATION......Page 200
6.3. PREVALENT THEORETICAL MODELS ON DILUTE NITRIDES......Page 204
6.4. ELECTROREFLECTANCE STUDY OF GaAsN......Page 206
6.5. RESONANT RAMAN SCATTERING STUDY OF CONDUCTION BAND STATES......Page 225
6.6. COMPATIBILITY WITH OTHER EXPERIMENTAL RESULTS......Page 229
6.7. A COMPLEMENTARY ALLOY: GaAsBi......Page 230
6.8. SUMMARY......Page 233
6.9. CONCLUSION......Page 235
REFERENCES......Page 236
7.1. INTRODUCTION......Page 241
7.3. SINGLE CARRIER LOCALIZATION IN InxGa1–xAs1–yNy......Page 243
7.4. MEASUREMENT OF THE ELECTRON EFFECTIVE MASS AND EXCITON WAVE FUNCTION SIZE......Page 248
7.5. CONCLUSIONS......Page 265
REFERENCES......Page 266
8.1. INTRODUCTION......Page 271
8.2. RESONANT TUNNELLING DIODES BASED ON DILUTE NITRIDES......Page 273
8.3. MAGNETO-TUNNELLING SPECTROSCOPY TO PROBE THE CONDUCTION BAND STRUCTURE OF DILUTE NITRIDES......Page 277
8.4. ELECTRONIC PROPERTIES: FROM THE VERY DILUTE REGIME (~0.1%) TO THE DILUTE REGIME......Page 282
8.5. CONDUCTION IN DILUTE NITRIDES AND FUTURE PROSPECTS......Page 287
8.6. SUMMARY AND CONCLUSIONS......Page 292
REFERENCES......Page 293
9. Photo- and Electro-reflectance of III–V-N Compounds and Low Dimensional Structures......Page 297
9.1. PRINCIPLES OF ELECTROMODULATION IN ELECTRO- AND PHOTO-REFLECTANCE SPECTROSCOPY......Page 298
9.2. BAND STRUCTURE OF (Ga,In)(As,Sb,N) BULK-LIKE LAYERS......Page 303
9.3. (Ga,In)(As,Sb,N)-BASED QUANTUM WELL STRUCTURES......Page 311
9.4. THE INFLUENCE OF POST-GROWN ANNEALING ON GaInNAs STRUCTURES......Page 327
9.5. PHOTOREFLECTANCE INVESTIGATION OF THE EXCITON BINDING ENERGY......Page 334
9.6. MANIFESTATION OF THE CARRIER LOCALIZATION EFFECT IN PHOTOREFLECTANCE SPECTROSCOPY......Page 337
REFERENCES......Page 339
10.1. INTRODUCTION......Page 343
10.2. BAND ANTICROSSING MODEL......Page 345
10.3. EXPERIMENTAL EVIDENCE OF BAND SPLITTING AND ANTICROSSING CHARACTERISTICS......Page 350
10.4. NOVEL ELECTRONIC AND TRANSPORT PROPERTIES OF III-N-V ALLOYS......Page 361
10.5. CONCLUSIONS......Page 371
REFERENCES......Page 372
ABSTRACT......Page 379
11.1. INTRODUCTION......Page 380
11.2. NITROGEN RESONANT STATES IN ORDERED GaNxAs1–x STRUCTURES......Page 382
11.3. ANALYTICAL MODEL FOR QUANTUM WELL CONFINED STATE ENERGIES AND DISPERSION......Page 386
11.4. INFLUENCE OF DISORDER ON NITROGEN RESONANT STATES, E– AND E+ IN GaNxAs1–x......Page 392
11.5. CONDUCTION BAND STRUCTURE AND EFFECTIVE MASS IN DISORDERED GaNxAs1–x......Page 396
11.6. ALLOY SCATTERING AND MOBILITY IN DILUTE NITRIDE ALLOYS......Page 403
11.7. CONCLUSIONS......Page 405
REFERENCES......Page 406
12.2. PHENOMENOLOGY OF DILUTE III–V NITRIDES......Page 411
12.3. EMPIRICAL PSEUDOPOTENTIAL METHODOLOGY......Page 413
12.4. ELECTRONIC STRUCTURE EVOLUTION OF DILUTE NITRIDES......Page 415
12.5. SUMMARY OF ELECTRONIC STRUCTURE EVOLUTION......Page 423
12.6. PHENOMENOLOGY OF DILUTE NITRIDE QUATERNARIES......Page 424
12.7. FUTURE CHALLENGES OF NEW NITRIDE MATERIALS......Page 426
REFERENCES......Page 427
13.1. INTRODUCTION......Page 433
13.2. THEORETICAL METHODS......Page 436
13.3. N–H COMPLEXES IN GaAsN ALLOYS......Page 438
13.4. INTRINSIC N AND H IMPURITIES IN GaP AND GaAs......Page 462
13.6. N–H COMPLEXES IN GaPN......Page 464
13.7. CONCLUSIONS......Page 465
REFERENCES......Page 466
14.1. INTRODUCTION......Page 469
14.2. DISLOCATION GENERATION MECHANISMS IN LATTICE-MISMATCHED HETEROEPITAXY......Page 470
14.3. LATTICE-MATCHED HETEROEPITAXY OF III–V-N ALLOYS ON III–V COMPOUND SEMICONDUCTORS......Page 472
14.4. GROWTH OF DISLOCATION-FREE III–V-N ALLOY LAYERS ON Si SUBSTRATES......Page 474
14.5. DEVICE APPLICATIONS......Page 479
14.6. SUMMARY......Page 485
REFERENCES......Page 486
15.1. INTRODUCTION......Page 489
15.2. MBE OF THE GaNAsSb ALLOY......Page 490
15.3. BANDS......Page 493
15.4. ANNEALING EFFECT......Page 496
15.5. QUINARY ALLOY......Page 500
15.6. LONG-WAVELENGTH GaAs-BASED LASER......Page 503
15.7. HBT......Page 506
15.8. CONCLUSIONS......Page 509
REFERENCES......Page 510
16.1. INTRODUCTION: 0.85 μm VERSUS 1.3 μm VCSELs......Page 513
16.2. APPROACHES TO ACHIEVE 1.3 μm VCSELs......Page 515
16.3. 1.3 μm VCSELs BASED ON InGaAsN......Page 517
16.4. OUTLOOK......Page 520
REFERENCES......Page 521
17.1. INTRODUCTION......Page 525
17.2. EPITAXIAL GROWTH SYSTEMS: MOVPE AND MBE......Page 529
17.3. ION DAMAGE AND ANNEALING BEHAVIOR......Page 533
17.4. GaInNAsSb EDGE-EMITTING LASERS......Page 535
17.5. SPONTANEOUS EMISSION STUDIES......Page 550
17.6. GaInNAsSb VCSELs......Page 557
17.7. HIGH POWER LASERS BASED ON GaInNAs(Sb)......Page 565
17.8. RELATIVE INTENSITY NOISE......Page 570
17.9. GaInNAsSb ELECTROABSORPTION MODULATORS AND SATURABLE ABSORBERS......Page 576
17.10. LASER RELIABILITY......Page 581
17.11. SUMMARY......Page 586
REFERENCES......Page 587
18.1. INTRODUCTION......Page 597
18.2. DESIGN CONSIDERATIONS FOR GaInNAs BASE HBTs......Page 603
18.3. MATERIAL GROWTH AND DEVICE PROCESSING......Page 609
18.4. GaInNAs HBT RESULTS......Page 613
18.5. CIRCUIT APPLICATIONS FOR GaInNAs HBTs......Page 622
18.6. FUTURE OUTLOOK......Page 624
REFERENCES......Page 626
Index......Page 631