Kumar (electrical and electronic engineering, California State University) offers a practical text for those studying digital signal processing (DSP) for the first time, combining background on theory with material on hardware and software aspects of DSP. Each chapter consists of a brief section of theory to explain the underlying mathematics and principles, a problem-solving section, and a computer laboratory section with programming examples and exercises using MATLAB and Simulink. Some chapters include a hardware laboratory section comprised of exercises using test and measuring equipment.
Author(s): B. Preetham Kumar
Edition: 1
Publisher: Taylor & Francis
Year: 2005
Language: English
Pages: 252
City: Boca Raton, Fla
2784fm......Page 1
DIGITAL SIGNAL PROCESSING LABORATORY......Page 2
Preface......Page 5
Contents......Page 8
Guidelines for Students......Page 14
APPENDIX E: Texas Instruments DSPs and DSKs......Page 0
1.1.1 Applications of DSP......Page 15
1.1.2 Discrete-Time Signals and Systems......Page 17
1.2 Problem Solving......Page 18
System Operating Commands......Page 19
Vectors and Matrices......Page 20
Programming with vectors......Page 21
Basic Signal Operations In MATLAB......Page 22
General Simulink® Operations......Page 23
Demo Files......Page 24
1.4.1 Sinks or Measuring Devices......Page 25
1.5 Digital Signal Processors (DSPs)......Page 26
References......Page 29
Linear Convolution......Page 30
2.1.1 Introduction to Z-Transforms and the System Function H(z)......Page 32
Properties of the System Function H(z)......Page 33
2.1.2 System Frequency Response H(ejω)......Page 34
2.1.3 Important Types of LTI Systems......Page 36
2.2 Problem Solving......Page 39
MATLAB Examples......Page 40
References......Page 46
3.1.1 Discrete-Time Fourier Transform......Page 47
Analog frequency and digital frequency......Page 48
3.1.2 Discrete Fourier Transform......Page 49
Properties of the DFT......Page 50
Circular Convolution......Page 51
FFT Computation of a 4-point DFT......Page 54
Practical Usage of the FFT: Computation of Fast Fourier Transform with MATLAB......Page 56
FFT evaluation of periodic signals......Page 57
3.2 Problem Solving......Page 58
Aperiodic triangular pulse......Page 60
3.4 Hardware Laboratory......Page 62
References......Page 64
4.1.1.1 Time Sampling......Page 65
Uniform Quantizer......Page 67
Nonuniform Quantizer......Page 70
4.1.1.3 Binary Encoding......Page 72
4.2 Problem Solving......Page 73
Practical circuit for A/D conversion......Page 74
Practical circuit for D/A conversion......Page 75
a. Transmitter......Page 76
4.4 Hardware Laboratory......Page 77
References......Page 79
5.1.1 Analog and Digital Filters......Page 80
5.1.2 Design Techniques for FIR and IIR Digital Filters......Page 82
Impulse invariance method......Page 83
5.1.2.2 Analytical Techniques for FIR Filter Design......Page 84
Examples of commonly used windows......Page 86
5.2 Problem Solving......Page 89
5.3.1 Basic MATLAB Commands to Calculate and Visualize Complex Frequency Response......Page 90
Method II. Window-based FIR filter design II......Page 91
Method III. Optimization approach......Page 92
5.3.3 CAD of IIR Filters......Page 93
References......Page 95
Two-dimensional discrete signals......Page 96
Two-dimensional discrete systems......Page 97
Two-dimensional Discrete-Time Fourier Transform (2-d DTFT)......Page 98
2-d Discrete Fourier Transform (2-d DFT)......Page 99
6.1.2 Simulation of 2-Dimensional Imaging Process......Page 100
6.2 Problem Solving......Page 102
6.3.1 Frequency Selection Applications......Page 103
6.3.2 Signal Demodulation Applications......Page 104
6.3.3 Filtering of Noisy Audio Signals......Page 105
6.3.4 Filtering of Noisy Video Signals......Page 106
Image Compression Technique......Page 108
6.3.6 Time-Frequency Analysis of Practical Signals......Page 109
References......Page 112
7.1.2 Types and Sources of DSP Chips......Page 113
7.1.2.1 Evolution of Texas Instruments TMS320 DSP Chips......Page 114
7.1.4 Programming Languages......Page 115
7.2.2 Initial Setting Up of the Equipment......Page 117
7.2.3 Study and Testing of the Code Composer Studio (CCS)......Page 118
7.2.4 Experimenting with the ‘C6711 DSK as a Signal Source......Page 125
7.2.5 Experimenting with the ‘C6711 DSK as a Real-Time Signal Source......Page 144
7.2.6 Experimenting with the ‘C6711 DSK as a Sine Wave Generator......Page 148
7.2.7 Experimenting with the ‘C6711 DSK for Math Operations......Page 150
References......Page 152
8.1 Overview of Practical DSP Applications in Communication Engineering......Page 154
8.2 Filtering Application to Extract Sinusoidal Signal from a Combination of Two Sinusoidal Signals......Page 155
8.3 Filtering Application to Extract Sinusoidal Signal from a Noisy Signal......Page 160
8.4 Comparative Study of Using Different Filters on an Input Radio Receiver Signal......Page 165
References......Page 173
A.1 Introduction......Page 174
A.2.1 Waveforms......Page 175
A.2.3 Sinewave Spectral Purity......Page 176
A.2.5 Output Characteristics......Page 177
A.2.7 Burst......Page 178
A.2.10 Trigger Characteristics......Page 179
A.2.13 General Specifications......Page 180
A.3 Operating Instructions for HP 3324A Synthesized Function/Sweep Generator......Page 181
Reference......Page 182
B.1 Introduction......Page 183
B.2.1 Frequency Specifications......Page 184
B.2.3 Amplitude Specifications......Page 185
B.2.4 General Specifications......Page 186
B.2.5 System Options......Page 187
B.3 Operating Principle of HP 8590L RF Spectrum Analyzer......Page 188
Reference......Page 189
C.1 Introduction......Page 190
C.2 Technical Specifications of the Agilent HP35670A......Page 191
C.2.2 Single Channel Amplitude......Page 192
C.2.3 FFT Dynamic Range......Page 193
C.2.7 Cross-Channel Amplitude......Page 194
C.2.9 Input......Page 195
C.2.11 Tachometer......Page 196
C.2.12 Source Output......Page 197
C.2.14 Computed Order Tracking — Option 1D0......Page 198
C.2.15 Real Time Octave Analysis — Option 1D1......Page 199
C.3 General Specifications......Page 200
C.4.2 Dual Channel Mode Operation......Page 202
Reference......Page 203
D.1 Introduction......Page 204
D.2.1 Acquisition: Analog Channels......Page 205
D.2.3 Vertical System: Analog Channels......Page 206
D.2.4 Vertical System: Digital Channels (54621D, 54622D, 54641D, and 54642D only)......Page 209
D.2.5 Horizontal......Page 210
D.2.6 Trigger System......Page 211
D.2.9 External (EXT) Triggering......Page 213
D.2.10 Display System......Page 214
D.2.12 FFT......Page 215
D.2.14 I/O......Page 216
D.2.17 Environmental Characteristics......Page 217
D.3 Operating Principle of HP 54510A Digitizing Oscilloscope......Page 218
Reference......Page 219
E.1 Introduction to Digital Signal Processors (DSPs)......Page 220
E.1.1 Alternative Solutions to Digital Signal Processors......Page 221
E.2 Texas Instruments DSP Product Tree......Page 222
E.3.1 Code-Compatible Generations......Page 223
E.4.1 Timing......Page 224
E.5 TMS320C6711 Digital Signal Processing Starter Kit......Page 226
E.5.1 Hardware and Software Components of the DSK......Page 227
E.6.1 Signal Generation Applications Using the ‘C6711 DSK......Page 228
E.6.2 Spectral Analysis Applications Using the ‘C6711 DSK......Page 232
E.6.3 Digital Filtering Applications Using the ‘C6711 DSK......Page 236
References......Page 241
F.2. Digitizing Oscilloscopes......Page 242
National Instruments (NI) Models......Page 243
HP-Agilent Model......Page 247
F.5 Spectrum Analyzers......Page 249
HP-Agilent Models......Page 250
Tektronix Models......Page 251
References......Page 252