Differential Equations and Linear Algebra

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Differential equations and linear algebra are the two crucial courses in undergraduate mathematics. This new textbook develops those subjects separately and together. The complete book is a year's course, including Fourier and Laplace transforms, plus the Fast Fourier Transform and Singular Value Decomposition. Undergraduate students in courses covering differential equations and linear algebra, either separately or together, will find this material essential to their understanding.

Author(s): Gilbert Strang
Publisher: Wellesley - Cambridge Press
Year: 2014

Language: English
Pages: 512
City: Wellesley, MA
Tags: Ordinary Differential Equations; Numerical Methods; Partial Differential Equations; Linear Algebra; Mathematics; Fourier Transform; Laplace Transform; Textbook; Applied Mathematics

Preface; 1: First Order Equations; 1.1: Four Examples: Linear versus Nonlinear; 1.2: The Calculus you Need; 1.3: The Exponentials; 1.4: Four Particular Solutions; 1.5: Real and Complex Sinusoids; 1.6: Models of Growth and Decay; 1.7: The Logistic Equation; 1.8: Separable Equations and Exact Equations; 2: Second Order Equations; 2.1: Second Derivatives in Science and Engineering; 2.2: Key Facts About Complex Numbers; 2.3: Constant Coefficients A, B, C; 2.4: Forced Oscillations and Exponential Response; 2.5: Electrical Networks and Mechanical Systems; 2.6: Solutions to Second Order Equations; 2.7: Laplace Transforms Y(s) and F(s); 3: Graphical and Numerical Methods; 3.1: Nonlinear Equations; 3.2: Sources, Sinks, Saddles, and Spirals; 3.3: Linearization and Stability in 2D and 3D; 3.4: The Basic Euler Methods; 3.5: Higher Accuracy with Runge-Kutta; 4: Linear Equations and Inverse Matrices; 4.1: Two Pictures of Linear Equations; 4.2: Solving Linear Equations by Elimination; 4.3: Matrix Multiplication; 4.4: Inverse Matrices; 4.5: Symmetric Matrices and Orthogonal Matrices; 5: Vector Spaces and Subspaces; 5.1: The Column Space of a Matrix; 5.2: The Nullspace of A: Solving Av=0; 5.3: The Complete Solution to Av=b; 5.4: Independence, Basis and Dimension; 5.5: The Four Fundamental Subspaces; 5.6: Graphs and Networks; 6: Eigenvalues and Eigenvectors; 6.1: Introduction to Eigenvalues; 6.2: Diagonalizing a Matrix; 6.3: Linear Systems y =Ay; 6.4: The Exponential of a Matrix; 6.5: Second Order Systems and Symmetric Matrices; 7: Applied Mathematics and ATA; 7.1: Least Squares and Projections; 7.2: Positive Definite Matrices and the SVD; 7.3: Boundary Conditions Replace Initial Conditions; 7.4: Laplace's Equation; 7.5: Networks and the Graph Laplacian; 8: Fourier and Laplace Transforms; 8.1: Fourier Series; 8.2: The Fast Fourier Transform; 8.3: The Heat Equation; 8.4: The Wave Equation; 8.5: The Laplace Transform; 8.6: Convolution (Fourier and Laplace); Matrix Factorizations; Properties of Determinants; Index; Linear Algebra in a Nutshell.