Author(s): James D. Meiss
Edition: 1st
Publisher: SIAM
Year: 2007
Language: English
Commentary: missing p.124 and errata added
Pages: 441
Cover......Page 1
Title page......Page 4
List of Figures......Page 12
Preface......Page 18
Acknowledgments......Page 22
1.1 Modeling......Page 24
1.2 What Are Differential Equations?......Page 25
1.3 One-Dimensional Dynamics......Page 28
Population Dynamics......Page 31
Mechanical Systems......Page 33
Oscillating Circuits......Page 34
Fluid Mixing......Page 36
Nullclines......Page 37
Phase Curves......Page 40
1.6 The Lorenz Model......Page 42
1.7 Quadratic ODEs: The Simplest Chaotic Systems......Page 44
1.8 Exercises......Page 46
2.1 Matrix ODEs......Page 52
Eigenvalues and Eigenvectors......Page 53
Diagonalization......Page 56
2.2 Two-Dimensional Linear Systems......Page 58
2.3 Exponentials of Operators......Page 63
2.4 Fundamental Solution Theorem......Page 68
2.5 Complex Eigenvalues......Page 71
2.6 Multiple Eigenvalues......Page 73
Semisimple-Nilpotent Decomposition......Page 74
The Exponential......Page 76
Alternative Methods......Page 79
2.7 Linear Stability......Page 80
2.8 Nonautonomous Linear Systems and Floquet Theory......Page 84
2.9 Exercises......Page 90
3.1 Set and Topological Preliminaries......Page 96
Uniform Convergence......Page 98
3.2 Function Space Preliminaries......Page 99
Metric Spaces......Page 100
Contraction Maps......Page 103
Lipschitz Functions......Page 104
3.3 Existence and Uniqueness Theorem......Page 107
3.4 Dependence on Initial Conditions and Parameters......Page 115
3.5 Maximal Interval of Existence......Page 121
3.6 Exercises......Page 124
4.1 Definitions......Page 128
4.2 Flows......Page 130
4.3 Global Existence of Solutions......Page 132
4.4 Linearization......Page 135
4.5 Stability......Page 139
4.6 Lyapunov Functions......Page 146
4.7 Topological Conjugacy and Equivalence......Page 153
4.8 Hartman-Grobman Theorem......Page 161
4.9 Omega-Limit Sets......Page 166
4.10 Attractors and Basins......Page 171
4.11 Stability of Periodic Orbits......Page 175
4.12 Poincaré Maps......Page 177
4.13 Exercises......Page 182
5.1 Stable and Unstable Sets......Page 188
5.2 Heteroclinic Orbits......Page 190
5.3 Stable Manifolds......Page 193
5.4 Local Stable Manifold Theorem......Page 196
5.5 Global Stable Manifolds......Page 204
5.6 Center Manifolds......Page 209
5.7 Exercises......Page 215
6.1 Nonhyperbolic Equilibria in the Plane......Page 220
6.2 Two Zero Eigenvalues and Nonhyperbolic Nodes......Page 221
6.3 Imaginary Eigenvalues: Topological Centers......Page 226
6.4 Symmetries and Reversors......Page 234
6.5 Index Theory......Page 237
Higher Dimensions: The Degree......Page 240
6.6 Poincaré-Bendixson Theorem......Page 242
6.7 Liénard Systems......Page 247
6.8 Behavior at Infinity: The Poincaré Sphere......Page 252
6.9 Exercises......Page 261
7.1 Chaos......Page 266
7.2 Lyapunov Exponents......Page 271
Definition......Page 273
Properties of Lyapunov Exponents......Page 275
Computing Exponents......Page 278
7.3 Strange Attractors......Page 282
Hausdorff Dimension......Page 283
Strange, Nonchaotic Attractors......Page 285
7.4 Exercises......Page 288
8.1 Bifurcations of Equilibria......Page 290
8.2 Preservation of Equilibria......Page 294
8.3 Unfolding Vector Fields......Page 296
Unfolding Two-Dimensional Linear Flows......Page 298
8.4 Saddle-Node Bifurcation in One Dimension......Page 301
8.5 Normal Forms......Page 304
Homological Operator......Page 305
Matrix Representation......Page 308
Higher-Order Normal Forms......Page 310
8.6 Saddle-Node Bifurcation in R^n......Page 313
Transversality......Page 314
Center Manifold Methods......Page 316
8.7 Degenerate Saddle-Node Bifurcations......Page 318
8.8 Andronov-Hopf Bifurcation......Page 319
8.9 The Cusp Bifurcation......Page 324
8.10 Takens-Bogdanov Bifurcation......Page 327
Fragility of Heteroclinic Orbits......Page 329
Generic Homoclinic Bifurcations in R2......Page 332
8.12 Melnikov's Method......Page 334
8.13 Melnikov's Method for Nonautonomous Perturbations......Page 337
8.14 Shilnikov Bifurcation......Page 345
8.15 Exercises......Page 348
9.1 Conservative Dynamics......Page 356
9.2 Volume-Preserving Flows......Page 358
9.3 Hamiltonian Systems......Page 359
9.4 Poisson Dynamics......Page 363
9.5 The Action Principle......Page 366
9.6 Poincaré Invariant......Page 369
9.7 Lagrangian Systems......Page 371
Coordinate Independence of the Action......Page 373
Symmetries and Invariants......Page 377
9.8 The Calculus of Variations......Page 379
9.9 Equivalence of Hamiltonian and Lagrangian Mechanics......Page 381
9.10 Linearized Hamiltonian Systems......Page 383
Eigenvalues of Hamiltonian Matrices......Page 385
9.11 Krein Collisions......Page 388
9.12 Integrability......Page 391
9.13 Nearly Integrable Dynamics......Page 392
Invariant Tori......Page 393
KAM Theory......Page 394
9.14 Onset of Chaos in Two Degrees of Freedom......Page 396
9.15 Resonances: Single Wave Model......Page 401
9.16 Resonances: Multiple Waves......Page 404
9.17 Resonance Overlap and Chaos......Page 405
9.18 Exercises......Page 409
A.l Vector Fields......Page 416
A.2 Matrix Exponentials......Page 417
A.3 Lyapunov Exponents......Page 418
A.4 Bifurcation Diagrams......Page 419
A.5 Poincaré Maps......Page 420
Bibliography......Page 422
Index......Page 430
Errata......Page 436