Differential and Integral Calculus Vol. II

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Nikolaĭ Semenovich Piskunov
Series: Differential and Integral Calculus 02
Publisher: Mir Publishers

Language: English
Pages: 104
City: Moscow

in
DIFFERENTIAL
INTEGRAL
CALCULUS
C-t», —
£= V^+(af)
S-7 «
*',=sinh (■j+c*)
y’ = f(x.y) (1')
y'=f(x, y)
y |*=*, = I/o
d£=f(x, y) (H
C> (3)
i=fA*)h(y) (O

(3)
(1)
/(*. y)=f(i>i)
<1
(i)
dXy OyXy + byÿy
(6)
(7)
x'djrrr=ï;
C/(*-2)* + (y-l)»=e
y=v(x)§T$dx+c°(x) (6)
^~FfT^/=(JC+1),
HU-Fnt,)+t’3r=(*+,>*
u{ê-2xv)+vTx=-2*
(2)
(4)
|J= liüdx+v' (yy^N (x' y)
<£(*. y, C) = o (1)
*-*+i-[*-*+4r=°
y=x%+^{%) (h
[x+Ÿ (p)]d£~o
/■+(=)
p=v(p)+[*?' (p)+%
F{x> y* ï)=0
(2)
«M*. y> C) = 0
(4)
(5)
ta"»-T!rlbr <6>
ÈL
£_i
0(n) = /(■*. y, y’, ..., 0*"-»)
p_il±Æ*
y'=îhî(l-x)dxs=ij(lx-t)
%=p- Then S=i-
ÿ=-L VT+p*
in{p+/T+7) =-+Ct
p=sinh('zr+c‘)
(3)
= ±Kcl-sr,/»
■f
Y
sin -nrsmJLw-
FT=T- Yï*‘
y" = f(x, y, y')
(3)
y[ y2
W (ÿi. yt) =
y[ y\
W'x (ylt y2) = (y^—ylyA' = y^l—yly*
W'+a.W^O (6)
r0=c
(r),=,.-c=o
ÿx=p = 0, y;_ 3-0
=*H:
^=1, 2
k* + q = 0, q> 0
k\ + pk1 + q = Q
y = ÿ+y* (3)
CJ = Ti(*). C; = . 1 , 3 *
ÿ*==*(— eX
%+ay=b (io)
% + ay = 0
C[y[n~" + +... + =/(*) j
y* = C1yl + Ciy2+...+Cnyn (5)
(1)
(H
Q^r + *-% + ky = — k *.—7+ /f3?. *. = -!•- YT-i
y = C1e^t + CJe~^* =(C, +(3)
y”+qy=o (4)
ÿ,=7i?=S¥Wsi"(“(+'p')
D ^ pî y a -x2)2+v2*2
X= J/T=!
(5)
(7)
(3)
(4)
f (6)
(8)
}
(H
lf(0-*(0l<« \
(3)
7ïf-=M*. y)
. . | (4)
__cx0 + gyn-x„X2 „x., , x0X1—cx0—gyn^t
lim y (0 = 0
y=ÿ(t, Cu C2) J
x = y(t, x0, ÿ0) 1 y=V(t, *o. I/o) j
4
J*(0l ar*+y
cp -.f, x2 c
^2 +A, = 0,
£?-'(*•§) <26>
(1)
y„ =* ç (*<>). Vx = «P (*i). • • •. yn = «p (*■)
(2)
y' = f(x,y) . (1)
y"=%+%y' (3)
yi=y»+-çy<,+j^y*+$\yo
yt=ye+jye+xrtyi>+ -âi-y*
a = x„, x = xk+1 = xk + h:
*/*+!= yk + y y'k + y AyLi + ^ A^i-s + j
y* = /i (*., y0, z0)
—* +4 = 1.
'•‘r Y»3.
+ c* sin yi)+* ^2 (Ca cos yj+c*sin ï%) •
*=/(*> y)
Vn,t yntt •••» ••• (2)
b / //>=$( $<*• + **)«& )dx
'as. = /(/>,) As,
«M*. y)>®Ax, y)
/(*. y) dxdy
H J •'«"-p’prfp U-j [
= e~ptp dp^dQ = — ~ ^ e~pt j d0 = n (1
S (S*"p,pdp
Æ ss
*i = (4)
(5)
Mt[h, /(!,-, ri,)]
(3)
V l+ffill. r]i) + fy(li, Tl/)
lim S VT+f?(h, nù + fydi, h,) Asf
Y R1—*1 —y2
A//=(g? + »tf) AS,
Jj(«+n» AS,-
(y ^
SS
(1)
2 A5<-
2 T),AS,
SSdxdy SS S 0)
>> r / = $$$F(0, p, z)pdQdpdz (1)
de
= Yo[
Ans. P*pdpd0 = -j-. 21. J J dy dx. Ans. J J pdpd0=-^-.
F+irH
~VT and J ~YT-Ans■ h' V T-
a « 2 FiAs‘ = S (*/» và Axi+Y (xi' üi) Ayî\
=*(*,)•
0 %Y yù*yi = B
(2)
y=y*(x)
[ÿi W<ÿiW].
(M.)
/= f \dJLdJi + dJidl\dt
y, z)ds=lX[v(t), ♦(/), x(t)]V'P'(ty + V(ty + x'(t)tdt
F'
(5)
s
z = f(x, y)
$$zcos(n, z)do = ± J S z(x> y* /(*• y))dxdy
MS
SSk^rnda^wSSrnda
«
j/i+
(ÊL
V
(ÊL
(ÊL
a)
SS^-§dxdy^-SS^cos(n’y)da (7)
+(ïr-SBcos(n’ ^-)cos dv.
(M.)
T mv2~mvl= j
'“ïï( I
v ==iêc+Jdjj + fo-k
(5)
A L
div (grad «) = !(!)+£(%) + ê{liï)
II (£+0)^=1 [Scos(n- Xî+Tysin{n’ x>]*
III l”to-uàv)dxdyd*=^ (o|-« ^do
III (^^<^^^)d*dyd*=!![Xcos(n’ cos("’ y)+zc°s(n> zïïda
lz)
lz
SSa^da-SSu^da=0
s4= 1 +T+(t+t) = 1 + T + T = 1 + 2'T
S,= 1 +t + (t + t) + (t + T + T + t) = 1 +3’T
t+(t) +(t) +---+(2^n)"+---
f( 1) = «1. / (2) = «2 /(«)-=«» (2)
S / (*) ^
1_±+±_±_L.
rn (x) = m„+i (x) + «„+2 (*)+•••
l*l (3)
(4)
«1 (*) + «,W+...+H„W+... (5)
+ [«t (*) — “«(«)] + ••• + K (*) — “n (a)] + .. .
KI + K*ol
(5)
fl <"T^
f(x)=J(a) + ^r(a)
+ r(a)+... + {—^r(a) + Rn(x) (1)
R» = i^rnr f(n+" [<*+0 (*—*)]. o < e < î
/«-/«o+^r («)+fe^2f w+... +—r:r”(a)+---
e*= l+* + 2ï + 3, + -- - +^i +
(5)
(6)
ex+iy _ gX (C0S y _|_ (• siu y}
(1)
(2)
/ (0) = 1
MO:
ii
(4)
[(r + *)(r + fc—l) + (r+ *)—/>*]a* + a*_, = 0 or
(4)
...]
(5)
X L* 1 2-3 + 2-4.3-5 2-4-6-3-5-7*‘ • • • J
~Y7 \x~3f+5T-'• "J
, ,. v (~1)V
U\ [-+(T+Je+1)]^+,==S+T + 2T + 3T+Jc + 1
l/(*. 0.) —/(*. 0i)| S/(*.
\yn—yü\ \y%—yil
\y3—y3\ =
I y—yn\<
t-f^y) (0
(6)
, i , ,i
9.
V*
+ ...
+ 3fsina+4rcosa_--- •
-+*-')4+... •
(x-i-2)n I
73. j-L-, . 4>is. 2 ç£l(l*l < ^2 )• 74
^«s. !+£+£+
+1 ai I +1 I +1Û21 +1 bt | + ... +1 a„ | +1 bn | + ...
(3)
if'**-
(1)
a*=ir f*C0S^^=ir[*!1T-Tn-T f »«"**“*j=
fl#=-sr I f{x)dx=T
a° = iS f (1)
(2)
(3)
[0, n].
i I rwdx-zg— ;£>*<**+pa)+f+y i>*+p»
t+t i>*+6î>
(i)
(2)
S
(3)
sn(x)—f(x) = ~
J
i 2sinT
2sinT
|^(a)|<[M + M]—V
(2)
(3)
«1 = 7-.
«« = —.
(5)
(7)
(1)
(2)
(3)
(4)
(5)
(6)
s
(2)
A = S A fit and B = 2 Bfit
<*='’2 ») 06)
— y + ... . AnS. y.
(1)
1 + iR + lJ-O (5)
&+A%-c*ê-CL&~°
(1)
= (1)
(3)
[-*&LH- H
(4)
(5)
(6)
(7)
(8) (9)
u(x, 0) = (p (x) u (0, 0 = fi(0 u(l, t) = ^(t)
(1)
(2)
(3)
; p <8>
(l—;+ a*tJt(«/+i.* + (9)
ir=a-w
+ ( j «P (a)
*' „ vu
*(P) =
(1)
«|o = *(M) (2)
(8)
IW(-t~div(pv))d£ù=0
An=~^^^cosnt dt
= i+L [(ie,'('"

)B+(ie'<<<"p>)n]
+
(i)
«Uti —+
Ans-0(x’ /)=5E(àrrpsin
u(0, o = o,
(2)
(3)
-f(f)+/(«o ai
(4)
(5)
O)
(2)
(
(3)
L{r(t)}=le-r‘f'(t)dt (2)
p«F(p)-f-*r(o
ao]e~ptÿzdt + ai]e~ptiï£rdt +
(6)
w+x=l
i£+*w+2x=t
(i)
(p + T)2+(l^a*—t)
yr“.-4-
(B-4)
(2)
VJ
ir+4in'+3!/=0
\h (T) t
S fi(*)/*(t—x)dx
{} fi (T)/* (<—T)dtj = 5
Pi(p)FAp)
]Â~T
+
Y^4
(4)
Y
l/ a
(6)
S- + 2n| + ^ = 0 (1)
O)
(2)
(3)
(4)
(5)
* <*> = (*«-«,*)* + 4^ {(*»-«>«) sin o,/ —2niocoso)/}
11 i ! ! ! 1 M !
(7)
(8)
(9)
J_
O)
60(t-h)
(2)
(3)
S 1 (4)
S = ô(0 (6)
|r = /(0 + ô(0
= 0)
(O
P(i4) = P(fl1)-P(i4/fl1) + P(fl,)-P(i4/flt) + P(fl3)*P(»/Ba)
p^>=ôÆo.8=ë=a675
AA ... AÂ J ... Â
(x = i) = Cj
P«<*,= l-[p(*=y)+p(*=3-)+p(*=|-)]
p(^4)=p(^=4)+,,(^4)+p (*=4)
M [x] = 2 **/>* (1)
= 2 xkPk (O
M [*] = np
M [l] = £ lkpk-
(2)
l{x)~^7üexp
J
2. G(0) = 0.
(4)
(5)
(5')
f(a-,<;<„+,)=£ [®(-pT)—'® (-ïtt);
PH<ï<0 = ®(^-) (7)
I exP [-T^l
,w=ï?iïexp (“■»■)
(2)
r<-£<;<£)= J
(3)
p (a < i < W-4-[é ( t£)-(i. (2=2)
d = Jj1-E»)'dx-7751*'exp (■~£)'ix
-775[“0’exp(-w-)].'“-pH
O)
(3)
(4)
[(6)
2 2p/y=l (U
=_L/'ü_oU---W-
w= Sj(x'v)dv
(8)
2ol J
(6)
yfe:exp (-p!liM "Hh;exp (-p‘|)*
2 pü = i (2)
= ~n (3)
2 aï
^<-<^[H7fm)-H?T7k)} <8>
(7)
(i)
(4)
y=\\yiÿ* ••• 0.11
(6)
(10)
(O
(2)
(8)
(1)
(2)
(3)
(4)
(5)
(6)
(1)
(2)
(3)
(4)
(5)
(2)
(3)
(4)
(5)
(3)
(4)
(5)
(6)
(5)
(6)
(7)
(8)
(9)
(10)
*î = «n*i+'“21*2+ «8.*s ]
(3)
(4)
(5)
(6)
(7)
(8)
(1)
(2)
(3)
y» ~ ^3-^3
(4)
(5)
(6)
O)
(2)
(8) (9)
(10)
(5)
(6)
(7)
(8)
(10)
(2)
(3)
(l)
Il fl (011 = 11 fl// (011 (<=1.2 «; /=!. 2 n) (2)
(3)
j_
(0
(4)
(5)
D||a|| = ||£>û|| (6)
S
(7)
(8)
(9)
d\ ^ (1)
= ®mxl "t" ®n2 X2 “h • • • 4" annxn
(0
(5)
(8)
«„
(9)
(10)
(H)
(1)
fon-.
(2)
(3)
a-Il-<11=Il “•INI •«il (5)
0)
ll*(0 II = Il *0 II + S II a (Z|) Il (|| *,11
+ | Il <*(**) II (il *o II + J II a (z,) || (.. .)d2^jd2^dzt