Differential and Integral Calculus Vol. I

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Nikolaĭ Semenovich Piskunov
Series: Differential and Integral Calculus 01
Publisher: Mir Publishers

Language: English
Pages: 104
City: Moscow

N. PISKUNOV
DIFFERENTIAL
INTEGRAL
CALCULUS
M—y\
(1)
2" > T’ nlog2>logTor n>T^2’
_I2_ > _J > _L2_
|a(*)| (1+^)"
(!+--) =,l™ (^r-^.o+Tj'
-,az('+r)'('+T)^-'-e
'.?.('+7);K)*('4r
ln*=i,og*
/(**) a, P, y, ...
Um = lim ( ! _I) = !-Hç, 1 = j _ j = °
(2)
«' u" & y * yxf fa
(1)
^ = /'(*o) + Y .
A y = nxtt~l Ax+ /l(|t~l) xn~2 (A*)* + ... + ( Ax)n
-jr~sin (*+¥) (*+t)
=L^)v+u Vm^+litn Au lim^
2 VT
S.-L* (,+Ü)
(1)
a (wTTv ,nu)
/7=T.. WCget
*=

(*vi)
V i —*2
but
y =—■=f
y i—x*
,.,M, I ».-/.<«>*.<*>
(i)
ÿ = [<£(*)] (2)
0 = ^(0 I
16=4-
(3').
rw-î
y=f(x)
y"=(y')' = /"(x)
r(x).
—sin B( 277 )* cos “ (—&7r){dx)t
nir m ' "
n ” /',<*.)
N = V y\+(y^Y = \yiV\+y?\
iV
x(tan*+-dh)-
3 v (*—1)2 v
TT+ï
V^+b*a+±, l/JTb*a+±s
m^i=r,c)
'■(4)
(1)
(2)
(3)
w . (7)
m-«) ('-•) < £$—fê- < (■4+e> c+e>
rw
(8)
+ ••• + ^ r(a) + R„(X) (6)
(7)
/•■' (o=- r (o+r (0 -V f (o+2-VL f w
f'"( <)+••• + fin) w + r (o
S*zzîïLfin+»(t) + ln+^X)Xty,Q
F' (0 = - —r2 /(n+1, (0 + (±=r1 Q
(8)
R* (*)=>j),)r/(n+1) [«+0 <*-«)]
+i£^r(a) + i£^,..*..[a+e(,-a)] (9)
+Çfin) (°)+(5nir ^ (0*) 0°)
/(*)=«*. /( 0) = 1
*=1 + I+i+'5ï+" •+¥
(1)
151<1*1
+o, - y~2
(1)
(2)
/(x, +AxX/fo)
/(Xj + Ax)—/(xx) < 0
o
/'W n* i)=o
4KI
6 X
te')*<0>°> (y\>o<0
/'(a) = f(a) = ...=r(a) = 0
f(x) = f(a) + ix-V*“f«+»(l) (2)
f(x)-f(a) = ^=^r+>>( |) (2')
y—ÿ=f(x)—f(x0)—f (xt) (x—x0)
\n
r2
{,=(*—u3
*-+•L * * J
(4)
(5)
—;—J
[-il-
K?-—■
(i)
V = f(x)
(2)
(3)
'(0q>'(0—q>" (01'(<)

= î/-.
' 2(/,
mnÈ y-i+fif)’
*- /P)
K _ l*q>| _|A(pf
(3)
(1)
de* de* " de ïi¥ = S- sin0+2 tbt cos 0—p sin 0
(4)
^=a, 4£=0
(O
9 = f(x) (3)
•fl, P = 0=F
/1+/1
(T)
dp
(£)•-(£)■
/<*) = o
1 *i—*! I = V (ûi—a,)2 + (f»i—b2)2
(6)
/(«i) = 0. /' (ax) — 0, f"(a1) = 0, .... /**■-« (fl|) = 0
... (x—a,)*'(x2 + pjx+ ?!)'* ... (x2 + psx + çs)‘s
*/o = z = f(x, y)
*=/(*. y)
f(xo, y0, y, ...)
(2)
+p‘
d*=éAx+éAy
(1)
(2) (3)
(4)
T
|Ay|+ • •• +
(1)
(2)
V (75)*—(32)* 75 Y(75)* — (32)*
|ô*x|
(3)
|A*/|
(4)
|ô*u|
I A*y| \y\
6**1 +|«VI
|ô*«|=16*x|+|à*y|
Â7 = dï--ÂF + *T ÂF+^-sj 4-Y*-5J-
(4)
(4')
d±=2x
(6)
(2)
f'x(x, y + Ay)—f'x(x, y) = Ayf’xy (x, ÿ)
A = AxAyf’xy{x, ÿ) (1)
A=[f(x+Ax, y+Ay)—f(x, y+Ay)] — [f(x+Ax, y)—f(x, y)]
♦ (ÿ) = /(* + Ax, y)—f(x, y)
A=ÿ(y + Ay) —ÿ(y)
V (ÿ) = fy{x + Ax, y)—fy(x, y)
f'y(x + Ax, y) — fy(x, y) = Axf’yx(x, ÿ)
A = Ay Axf’yx (x, y) (2)
Ax Ayfxu (x, ÿ) = Ay Axfyx (x, ÿ)
^4+1+9 vu
vi4 /t?
(-t)»-* (§)*=2
f2.
+2
^-27T
y)
f (*. y) =
+ (y—b)2 flv (a, &)] +^- [(x—a)3f'^x(li, b)
/(*o. y0)>f(x, y)
/(*«,. &>) {t) i, tHen theremv
/(*.+A*, y.+Aÿ)=I (*.. y,)+dl y"1 A* + * ,l) Ai, +
=A*a+2 ^ A* Ay+ |f® Ay2 ] + a»(Ap)î
(1)
A/=|(Ap)® cos V+B sin 9 + 2ct(>Ap] {3)
a a .. (a a\
(6)
F(x„ x xn, Xlt .... K) = f(*i + ••
x„:
(9)
ÊL
+XZ+
^[i-g <«/+*)] =°
» [|-â(x+z)]=°
i(y+*)=1’ ï(*+*)=l- i (4)
S [yt—a. b,c, ...)] d

Z
(5)
S (a. b) = 2 lw-(«/ + »)]*
23*/“H. i]y/=io
(§).„-<* - (SU-
£+üL_i
r =

Ar = r(/ + A/)—r(t)
+ [♦(/+ao-♦(<)] y
+ [x(f + A<) — x(0]k
%\-WW+fe' (0]2+[x' (O]2
«M*. 0. 2) = 0, .,(*, y, z) = 0 (6)
(12)
¥*-o.
—sr~=Ma+ =(M+M+ %ik) (M+M+ Xa*)+(M+M+x,*) (M+M'+x^)
As Tb
(2)
o.
(4)
(5)
(6)
(7)
(8)
I5-I- Bm |£
0.
(§)’
R,= {($)7
fdr
mi
{[•P' MP+N»' (0P}V*
(12)
- /(IHIHI7
(i)
(2)
£x»=-i-ffx» = 0
(3)
LL
x (2)
l»l-/(ï),+(S),+(ï)Vo
z-z=TxAx+%*y
(7)
(f+c)-,.
«P (*)—

2. jf=ln|*| + C.
10. ^axdx = -^ + C.
J yT^*5
lTfe-lnU+KlrïS!|+c
(S IM*)+ /•(*)]<**) =fi (*) + /* (*)
(5)
4-«
($ / [q> (0] =/[ =^+c=|5I,,,+c.
/,
-S;
l-\-bx-\-c J ax2 + bx + c
_ A C 2ax+b d (B Ab\ P dx
2 2a J ax2 + bx-l-ca 2a J J ax2-\-bx+c
IS£SFp-If-tal'l+C = l"l“‘+^+^+C
J_ Ç(2x—2)dx f» dx
-f
y xa-t-4x+ io
■î
f x2dX = f* xdX - = —* Va2—x2 + f Va2—x2dx J Va2-x2 J \fa2-x2
2 J (x* + px+q)" T\ 2 J J (x* + px+q)*
fC
= i[.
(<2 + m2)*-1
= J_ f f d(<2+m2)
O)
r
-_L_(W—!—)
C—* 1
+±_L_r—? f_ÜL_1
s
H
(5)
-4ini*+' i+4,nijc—2i+c
ç * r** f- •
J»'** “J & J,="
fQ- y 1+*+**)* ^
J x* y i +*+**
l+*+*2=*2/2 + 2;irf + l, * = àx=~^à.-£-dt
i—v'r+*+*î=■
J *2 Vl+x+* J (!-/•)• (»-!)• (<*-< +1)(1-/*)2
=+2I
J j/> + 3*_4
'-/Si
+c
cos T+Sin T
S 2^*=! ï+t 7+î *-1 (‘-2+rjh) *
I Si ifïî-f '■ "+'*>"'-T+f+c
ax2 + bx + c = a^x-+(c—
x+£ = t’ dx = dt
fis.. te. I,*v~+C. s. j(Js + -jLr + 2)*.
+ c.
.. w-m
J K^l + COS2^
J V(l-x2)4
i££ÜE£_ , i lB|i-*|,r Kî^i+Tln|T+3i|+c-
,7,‘ I ^eî/fx~dx'Ans' Z*^x'~i^xis +c-172• j*
V*
yr+x— y 1—x
yr+^+yr—;
i4ns. 14 x — ÿ V *+y 'V* - y V ** +ÿ k'V] +C.
2 tan-J
*0 < *1 < *2 < " • • < X„
(1)
(2)
(5)
sa = f(ll)Axl + f(ti)Ax2 + ...+f(ln)Axn = £f(ti)àxi (1)
Sn = 2 Axf
(9)
(10)
s" = * Lna + -4 H —Lû+"^ 2 J 2 î (6,) A*,. = 2 / «,) A*,. + 2 / (i,) Ax,
/«)
$/ [9(0] = F MP)]-F Ma)]
one says that J f(x)dx does not exist or diverges.
ÎT
b
!
f î±l«
J VI?
M(X„ i/o). i/i). i/o)
j f (x) dx « — (yt + 4y3 + y*)
«-if
(1)
(2)
(3)
J [f'a (X, a)4-e] dx = J fa(x, a)dx + ^edx
[i
<3>
^r = wSf(x’ a)dx = --fc$ï(x> o)dx = — f[a(a),a]
£ = /(*) = /[ P = /(6)
Qn = ÿ H p? Ae,.=-1X If (ë))]2 A0,
jfpMe
' Q = i-jp’d0 (1)
Q=tJ[/( °)lsd0 0')
sR=i/i+lrWAx,.
*=ç(0. y='H0. z = X(0 (6)
(•£)' ■+ (%)' - \r w+[f (»)]*=p'*+p*
Q = Q(S/)
Q (h) A.v,-
v„ = S Q (h) Ax,
Ay,- f(xt)—f(xj-1) ; ,, .
/>„=K s KT+TWax,. (1)
(3)
VTp
F (h) As,
AAk^dr=-ke'e*T\r,rrke'e*(^--k)
(i)
(2)