Author(s): H. Kober
Publisher: Dover
Year: 1957
Cover
Title page
Contents (detailed)
Notations and Nomenclature
I. PART ONE: Linear and bilinear transformations
l. The fixed points ot the transformation w = (az+b)/(cz+d), ad-bc≠0
2. The linear transformation w = az+b, a≠0
3. The general bilinear transformation transformation w = (az+b)/(cz+d), ad-bc≠0, c≠0
4. Special bi1inear transformations
5. Construction of linear and bilinear transformations
Appendix. An example for the use of formulae of part 1 in combinations: w = (4e^z-3i)(5e^z+6i)^{-1}
II. PART TWO: Algebraic functions, and z^α for real α
6. The functions w = z², z^α; az^α+bz^{-α} ; az^α+bz^β
7. Regions bounded by segments ot two or three circles or straight lines on half-plane
8. w = cz+β/z or (w+2k)/(w-2k) = (αz+k)²/(αz-k)²
References on the Theory of Aerofoils
9. Further transtormations
Appendix: Table of some interior and exterior mapping radii
III. PART THREE: w = e^z, w = log z and related functions
10. Elementary functions
11. Composite functions
IV. PART FOUR: Schwarz-Christoffel transtormations representable in terms of elementary transformations
12.0 Introduction: Some remarks on the general Schwarz-Christoffel transformation
12. Schwarz-Christoffel transformations
V. PART FIVE: Higher transcendental functions
13. Elliptic functions
14. Other functions
Main list of References
Geometrical Subject Index