Clear, rigorous definitions of mathematical terms are crucial to good scientific and technical writing-and to understanding the writings of others. Scientists, engineers, mathematicians, economists, technical writers, computer programmers, along with teachers, professors, and students, all have the need for comprehensible, working definitions of mathematical expressions. To meet that need, CRC Press proudly introduces its Dictionary of Algebra, Arithmetic, and Trigonometry- the second published volume in the CRC Comprehensive Dictionary of Mathematics. More than three years in development, top academics and professionals from prestigious institutions around the world bring you more than 2,800 detailed definitions, written in a clear, readable style, complete with alternative meanings, and related references.From Abelian cohomology to zero ring and from the very basic to the highly advanced, this unique lexicon includes terms associated with arithmetic, algebra, and trigonometry, with natural overlap into geometry, topology, and other related areas.Accessible yet rigorous, concise but comprehensive, the Dictionary of Algebra, Arithmetic, and Trigonometry is your key to accuracy in writing or understanding scientific, engineering, and mathematical literature.
Author(s): Steven G. Krantz
Series: Comprehensive Dictionary of Mathematics
Edition: 2003.
Publisher: Chapman & Hall
Year: 2000
Language: English
Pages: 326
Dictionary of Algebra, Arithmetic, and Trigonometry......Page 3
Preface......Page 5
Contributors......Page 6
Abelian integral of the second kind......Page 8
absolute multiple covariant......Page 9
addition......Page 10
adele......Page 11
admissible isomorphism......Page 12
Albanese variety......Page 13
algebraically closed field......Page 14
algebraic expression......Page 15
algebraic number......Page 16
algebroidal function......Page 17
Amitsur cohomology......Page 18
antiendomorphism......Page 19
arbitrary constant......Page 20
arithmetical equivalence......Page 21
artificial variable......Page 22
associate......Page 23
axiom......Page 24
Azumaya algebra......Page 25
basic form of linear programming problem......Page 26
Betti numbers......Page 27
binomial coefficients......Page 28
Borel-Weil Theorem......Page 29
Bravais group......Page 30
Burnside problem......Page 31
canonical homomorphism......Page 32
Cartan invariants......Page 33
Casorati's determinant......Page 34
Cayley projective plane......Page 35
character......Page 36
characteristic multiplier......Page 37
Chevalley's canonical basis......Page 38
class formation......Page 39
Clifford numbers......Page 40
cochain homotopy......Page 41
Cohen's Theorem......Page 42
column finite matrix......Page 43
commutative law......Page 44
complementary law of reciprocity......Page 45
complete pivoting......Page 46
complex analytic geometry......Page 47
complex representation......Page 48
composition series......Page 49
conductor......Page 50
connected graded module......Page 51
continuation method of finding roots......Page 52
Corona Theorem......Page 53
counting numbers......Page 54
Cremona transformation......Page 55
cube......Page 56
cyclic representation......Page 57
cyclotomic polynomial......Page 58
decomposition field......Page 59
definite Hermitian form......Page 60
denominator......Page 61
determinant factor......Page 62
difference of like powers......Page 63
differential ring......Page 64
direct sum......Page 65
discriminant......Page 66
division of polynomials......Page 67
Douglas algebra......Page 68
dual linear programming problem......Page 69
dynamic programming......Page 70
Eisenstein’s Theorem......Page 71
elliptic function field......Page 72
epimorphism......Page 73
equivalent valuations......Page 74
Euclidian Algorithm......Page 75
exact sequence......Page 76
exceptional compact real simple Lie algebra......Page 77
exponential function of a matrix......Page 78
exterior algebra......Page 79
extreme terms of proportion......Page 80
factor representation......Page 81
Fermat numbers......Page 82
filtration degree......Page 83
finite field......Page 84
finite simple group......Page 85
flat module......Page 86
forward elimination......Page 87
fraction......Page 88
free module......Page 89
Frobenius automorphism......Page 90
Frobenius generating function......Page 91
Frobenius substitution......Page 92
Frobenius Theorem......Page 93
Fuchsian group......Page 94
function algebra......Page 95
fundamental curve......Page 96
fundamental system......Page 97
Fundamental Theorem of Symmetric Polynomials......Page 98
fundamental vectors......Page 99
Galois group......Page 100
gauge transformation......Page 101
Gaussian elimination......Page 102
Gaussian sum......Page 103
GCRalgebra......Page 104
Gel’fand tableau......Page 105
generalization......Page 106
generalized Eisenstein series......Page 107
generalized law of reciprocity......Page 108
generalized Siegel domain......Page 109
generalized uniserial algebra......Page 110
generating representation......Page 111
generator(s)......Page 112
genus......Page 113
geometric programming......Page 116
good reduction......Page 117
Gram’s Theorem......Page 118
Grothendieck topology......Page 119
group minimization problem......Page 120
groupoid......Page 121
Guignard’s constraint qualification......Page 122
harmonic motion......Page 123
Hasse-Minkowski Theorem......Page 124
Hecke L-function......Page 125
higher-degree Diophantine equation......Page 126
Hilbert polynomial......Page 127
Hodge structure......Page 128
homogeneous bounded domain......Page 129
homological algebra......Page 130
homological mapping......Page 131
homotopy identity......Page 132
H-series......Page 133
hyperbolic transformation......Page 134
hyperelliptic integral......Page 135
hypo-Dirichlet algebra......Page 136
ideal group......Page 137
identity morphism......Page 138
imaginary unit......Page 139
indefinite quadratic form......Page 140
Index Theorem of Hodge......Page 141
induction......Page 142
inertia of (Hermitian) matrix......Page 143
infinite solvable group......Page 144
injective dimension......Page 145
injective resolution......Page 146
integer......Page 147
integrable family of unitary representations......Page 149
integral......Page 150
integral direct sum......Page 152
integral element......Page 153
integral ringed space......Page 154
intersection multiplicity......Page 155
intransitive permutation group......Page 156
invariant......Page 157
invariant of weight w......Page 158
inverse matrix......Page 159
inversion formula......Page 160
irrational number......Page 161
irreducible Coxeter group......Page 162
irreducible projective representation......Page 163
irredundant......Page 164
isomorphic......Page 165
isotropic......Page 166
iterative refinement......Page 167
Iwasawa's Theorem......Page 168
Jacobi's inverse problem......Page 169
Jensen's inequality......Page 170
Jordan algebra......Page 171
Jordan-Hölder Theorem......Page 172
Jordan normal form......Page 173
Jordan-Zassenhaus theorem......Page 174
kernel......Page 175
KMS condition......Page 176
k-rational divisor......Page 177
Kronecker limit formula......Page 178
Kronecker’s Theorem......Page 179
Krull dimension......Page 180
Krull’s Altitude Theorem......Page 181
Kummer’s criterion......Page 182
k-Weyl group......Page 183
Lanczos method of finding roots......Page 184
Lanczos method of matrix transformation......Page 185
largest nilpotent ideal......Page 186
Law of Signs......Page 187
least common multiple......Page 188
Lefschetz pencil......Page 189
left derived functor......Page 190
left inverse element......Page 191
left satellite......Page 192
Lehmer's method of finding roots......Page 193
Levi subgroup......Page 194
L-function......Page 195
Lie subalgebra......Page 196
linear......Page 197
linear equation......Page 198
linear fractional group......Page 199
linearly dependent function......Page 200
linear system......Page 201
locally Noetherian scheme......Page 202
long multiplication......Page 203
Lutz-Mattuck Theorem......Page 204
matrix of a quadratic form......Page 205
maximal prime divisor......Page 206
meet......Page 207
minimal Weierstrass equation......Page 208
Minkowski space......Page 209
mixed integer programming problem......Page 210
module of boundaries......Page 211
module with operator domain......Page 212
monomorphism......Page 213
morphism of schemes......Page 214
multiplication by logarithms......Page 215
multiplicatively closed subset......Page 216
mutually associated diagrams......Page 217
negative cochain complex......Page 218
Newton’s formulas......Page 219
Noetherian semilocal ring......Page 220
normal *-homomorphism......Page 221
normalized cochain......Page 222
normal subgroup......Page 223
number......Page 224
numerical range......Page 225
opposite......Page 226
orthogonal subset......Page 227
overfield......Page 228
partial pivoting......Page 229
perfect field......Page 230
Peter-Weyl theory......Page 231
pivot......Page 232
Poincaré duality......Page 233
pole divisor......Page 234
positive angle......Page 235
power-residue symbol......Page 236
prime divisor......Page 237
primitive idempotent element......Page 238
principal ideal ring......Page 239
principle of reflection......Page 240
projective class group......Page 241
projective resolution......Page 242
proper orthogonal matrix......Page 243
purely inseparable scheme......Page 244
Pythagorean triple......Page 245
quadratic residue......Page 246
quasi-local ring......Page 247
quotient chain complex......Page 248
quotient set......Page 249
ramification numbers......Page 250
rational function field......Page 251
rational representation......Page 252
real prime divisor......Page 253
reduced basis......Page 254
reduced module......Page 255
reducible equation......Page 256
reductive action......Page 257
regula falsi......Page 258
regular representation......Page 259
relative Bruhat decomposition......Page 260
relative homological algebra......Page 261
replica......Page 262
representative function......Page 263
Residue Theorem......Page 264
resultant......Page 265
Riemann-Roch Theorem for the adjoint system......Page 266
right A-module......Page 267
right order......Page 268
ringed space......Page 269
root......Page 270
rounding of number......Page 271
Rule of Three......Page 272
Schmidt’s Theorem......Page 273
secant of an angle......Page 274
semifinite function......Page 275
semireductive action......Page 276
sensitivity analysis......Page 277
series......Page 278
short representation......Page 279
Siegel domain of the third kind......Page 280
similar fractions......Page 281
simplex method......Page 282
single-valued function......Page 283
solution......Page 284
solvable by radicals......Page 285
special Clifford group......Page 286
spectral radius......Page 287
spherical function......Page 288
splitting field......Page 289
stable reduction......Page 290
Steenrod algebra......Page 291
Stone space......Page 292
structural constant......Page 293
subbialgebra......Page 294
substitution......Page 295
sum of perfect powers of integers......Page 296
Sylvester’s elimination method......Page 297
symmorphism......Page 298
system of inequalities......Page 299
syzygy theory......Page 300
tangent space......Page 301
theory of moduli......Page 302
toroidal embedding......Page 303
trace formula......Page 304
transfinite series......Page 305
transpose......Page 306
Tsen’s Theorem......Page 307
type of a group......Page 308
unitary algebra......Page 309
universal enveloping algebra......Page 310
upper triangular matrix......Page 311
variation......Page 312
vector bundle......Page 313
volume......Page 314
von Neumann reduction theory......Page 315
Weak Mordell-Weil Theorem......Page 316
weight function......Page 317
Weil group......Page 318
Weyl’s Theorem......Page 319
word problem......Page 320
x-axis......Page 321
Young symmetrizer......Page 322
Zequivalence......Page 324
zeta function......Page 325
Z-order......Page 326