There are a large and ever-increasing number of structures and buildings worldwide that are in need of refurbishment, rehabilitation and strengthening. The retrofitting of beams and slabs for this purpose is now recognized as the most cost-effective and environmentally sustainable method of carrying out this essential renovation work. The authors of Design of FRP and Steel Plated RC Structures are both acknowledged world experts on these techniques and their book has been designed to provide the reader with a comprehensive overview of the established techniques and their applications as well as thorough coverage of newly emerging methodologies and their uses. The comparison of FRP and steel is a particular focus and the authors provide practical examples of where one material might be used in preference to another. Indeed practical, worked examples of how, when, and why specific solutions have been chosen in real-world situations are used throughout the text and provide the user with invaluable insights into the decision-making process and its technical background. Just as importantly these examples make the understanding and application of these techniques easier to understand for the student and the practitioner. The book is international in appeal, as while no reference is made to specific local codes the authors' approach always follows that of the more advanced structural codes worldwide. As such it will remain an essential resource for many years to come. Design of FRP and Steel Plated RC Structures is an important reference for a broad range of researchers, students and practitioners including civil engineers and contractors, architects, designers and builders. · Contains detailed worked examples throughout to aid understanding and provide technical insight · Covers all types of metal plates and all types of FRP plates · Uses design philosophies that can be used with any mathematical model · Provides coverage of all main international guidelines
Author(s): Deric Oehlers, Rudolph Seracino
Edition: 1
Publisher: Elsevier Science
Year: 2004
Language: English
Pages: 252
Preface......Page 6
Notation......Page 10
Contents......Page 20
Introduction......Page 26
Bolted and Adhesively Bonded Plates......Page 27
Wrapping and Mechanical End Anchorage......Page 28
Tension Face Plates......Page 29
Compression Face Plates......Page 30
Major Debonding Mechanisms in Adhesively Bonded Plates......Page 31
Intermediate Crack (IC) Debonding......Page 32
Critical Diagonal Crack (CDC) Debonding......Page 33
Interface Shear Stress (VAy/Ib) Debonding......Page 35
Desired Form of Flexural Failure......Page 36
Summary of Common Debonding Mechanisms......Page 37
Adhesively Bonded Plates......Page 39
Bolted Plates......Page 41
Scope of Comparison......Page 42
Australian Approach......Page 43
Adhesively Bonded FRP Tension Face Plated Structures......Page 44
References......Page 47
Introduction......Page 49
Tension Face Plates......Page 50
Side Plates......Page 51
Adhesively-Bonded and Bolted Longitudinal Plates Predominantly in Flexure......Page 52
IC Debonding Resistance Contribution to Vertical Shear......Page 53
Pull-Push Tests......Page 54
Global Interface Behaviour......Page 55
Shear-Stress/Slip......Page 56
Plate-Axial-Stress/Slip......Page 58
IC Interface Crack Propagation......Page 59
IC Interface Crack Propagation Simulations......Page 61
Effective Width Concept......Page 62
IC Debonding Resistances......Page 63
Comparison of IC Debonding Resistances......Page 65
IC Debonding Design Philosophies......Page 66
Anchorage Design Philosophy......Page 67
Hinge Design Philosophy......Page 68
Conclusions......Page 69
References......Page 70
Material Ductility......Page 71
Moment/Curvature......Page 72
Maximum Curvatures......Page 73
Moment/Strains......Page 74
Beam Ductility......Page 76
Moment/Deflection......Page 77
Moment Redistribution Concept......Page 78
Moment Redistribution Capacity......Page 80
Hinge Approach......Page 81
Flexural Rigidity Approach......Page 82
Neutral Axis Depth Approach......Page 83
Flexural Rigidity Approach......Page 86
Examples of Moment Redistribution Capacities......Page 89
Plating Design Considerations......Page 93
Plastic Hinges at Supports......Page 94
Plastic Hinge in the Sagging Region......Page 95
FRP Plating Hogging Regions......Page 96
FRP Plating Sagging Regions......Page 98
Sectional Flexural Strength and Ductility Capacity......Page 99
Unplated Section......Page 100
Adhesively Bonded Tension Face Plated Beams......Page 101
Adhesively Bonded Shallow FRP Side Plated Beams......Page 103
Adhesively Bonded Deep Metal Side Plated Beams......Page 104
Bolted Side Plated Beams......Page 105
Adhesively Bonded Tension Face Plated Beam......Page 108
Analyses and Parametric Studies......Page 110
Slab Specifications......Page 111
Moment Redistribution......Page 112
Propped Flexural Analysis......Page 113
Beam Specifications......Page 115
Tension Face Plates on Underside of Flange in Hogging Region......Page 116
Side Plates Over Full Depth of Web in Hogging Region......Page 117
Full Interaction Flexural Analysis......Page 118
Bolt Forces......Page 119
Moment Redistribution in Metal Plated Hinges: Flexural Rigidity Approach......Page 120
References......Page 124
Introduction......Page 125
CDC Debonding Mechanism......Page 126
Examples of CDC Debonding of Tension Face Plates......Page 128
Concrete Shear Capacity of Unplated Beams or Slabs......Page 129
Critical Diagonal Cracks in RC Beams......Page 130
Qualitative Description of CDC Analysis......Page 131
Zhang's Iterative Approach......Page 132
Vertical Shear to Cause Cracking......Page 133
Vertical Shear to Cause Crack Sliding......Page 134
CDC Debonding of Tension Face Plates......Page 136
Position of Diagonal Crack Focal and Datum Points......Page 137
Shear to Cause Cracking of Tension Face Plated Sections......Page 139
Shear to Cause Crack Sliding in Tension Face Plated Sections - Longitudinal Reinforcement Approach......Page 141
Shear to Cause Crack Sliding in Tension Face Plated Sections - Passive Prestress Approach......Page 142
Shear Capacity Analysis......Page 143
Design Approach for CDC Debonding......Page 145
CDC Design Procedure in Hinge Approach......Page 146
CDC Design Procedure in Anchorage Approach......Page 148
Direct CDC Debonding Analysis......Page 149
Development of Mean Approach Procedure......Page 150
Mean Approach Analysis......Page 152
Prestressed Code Approach......Page 153
Comparison with Guidelines......Page 154
Hinge Approach with FRP Plates in Hogging Region of Beam......Page 155
Anchorage Approach with Steel Plates in Sagging Region of Slab......Page 157
References......Page 160
Introduction......Page 162
Generic CDC Debonding Analysis......Page 163
Iterative Approach......Page 164
Shear to Cause Cracking......Page 166
Shear to Cause Crack Sliding......Page 167
Critical Diagonal Crack......Page 169
Simplifications......Page 170
Short Plates......Page 172
Long Plates......Page 173
Direct Approaches......Page 174
Mean Approach......Page 175
Basic Analyses......Page 176
Shear Load at Datum Point Vdat to Cause CDC Debonding......Page 177
Further Extension of Plate......Page 179
Angle and U-Sections......Page 180
Compression Face Plates......Page 181
Increase in Shear Capacity Attained by Longitudinal Plating......Page 183
Shear Enhancement Design Philosophy......Page 185
Transverse Plates — Stirrup Component......Page 186
Hinge Approach with Full Depth Steel Plates in Sagging Region of Beam......Page 187
References......Page 189
PE Debonding Mechanism......Page 190
Tension Face Plates......Page 191
Side Plate with Centroid in Compression Zone......Page 192
Plates Bonded to Horizontal Surfaces......Page 193
Plates Bonded to Vertical Surfaces......Page 194
Plate End Applied Curvature......Page 196
PE Curvature Capacity and Applied Curvature......Page 197
PE Debonding Design for Short Term Loads......Page 198
PE Analysis for Bonded Interface Perpendicular to Bending Axis......Page 199
Side Plates......Page 200
Angle Plates......Page 201
Comparison of PE Debonding Rules for Tension Face Plates......Page 202
Compression Face Plates......Page 203
Generic Design Approach......Page 204
Interaction between PE, IC and CDC Debonding......Page 205
Examples......Page 206
References......Page 207
Introduction......Page 208
Anchorage Approach......Page 209
Hinge Approach......Page 210
Plate Material......Page 211
Occurrence of IC, CDC and PE Debonding......Page 212
Distribution of Moment......Page 214
Hogging Section......Page 215
Pultruded CFRP Plate......Page 216
Moment Redistribution......Page 217
Applied Loads......Page 218
Flexural Capacity (IC Debonding)......Page 219
Plate Extent (PE Debonding)......Page 220
Flexural Capacity (IC Debonding)......Page 221
Flexural Capacity (IC Debonding)......Page 222
Comparison of Plating Procedures......Page 223
Moment Redistribution......Page 224
Applied Loads......Page 225
Shear Capacity (CDC Debonding)......Page 226
Flexural Capacity (IC Debonding')......Page 227
Moment Redistribution......Page 228
Flexural Capacity (IC Debonding)......Page 229
Moment Redistribution Based on Flexural Rigidity Approach......Page 231
Summary of All Plated Slab Options......Page 232
Continuous Beam Structure with Adhesively Bonded Plates......Page 233
Applied loads......Page 234
Flexural Capacity (IC Debonding)......Page 235
Shear Capacity (CDC Debonding)......Page 236
Shear Capacity (CDC Debonding)......Page 238
Shear Capacity (CDC Debonding)......Page 240
Shear Capacity (CDC Debonding)......Page 242
Maximum Flexural Capacity......Page 243
Bolt Shear Connectors......Page 244
Maximum Flexural Capacity......Page 246
References......Page 247
Index......Page 248