QoS, short for "quality of service," is one of the most important goals a network designer or administrator will have. Ensuring that the network runs at optimal precision with data remaining accurate, traveling fast, and to the correct user are the main objectives of QoS. The various media that fly across the network including voice, video, and data have different idiosyncrasies that try the dimensions of the network. This malleable network architecture poses an always moving potential problem for the network professional.The authors have provided a comprehensive treatise on this subject. They have included topics such as traffic engineering, capacity planning, and admission control. This book provides real world case studies of QoS in multiservice networks. These case studies remove the mystery behind QoS by illustrating the how, what, and why of implementing QoS within networks. Readers will be able to learn from the successes and failures of these actual working designs and configurations. *Helps readers understand concepts of IP QoS by presenting clear descriptions of QoS components, architectures, and protocols*Directs readers in the design and deployment of IP QoS networks through fully explained examples of actual working designs*Contains real life case studies which focus on implementation
Author(s): John William Evans, Clarence Filsfils
Series: The Morgan Kaufmann Series in Networking
Edition: 1
Publisher: Morgan Kaufmann
Year: 2007
Language: English
Pages: 456
Front Cover......Page 1
Deploying IP and MPLS QOS for Multiservice Networks......Page 4
Copyright Page......Page 5
Contents......Page 6
Preface......Page 14
Acknowledgments......Page 22
About the authors......Page 24
1.1 Introduction......Page 26
1.2.1 Network Delay......Page 29
1.2.2 Delay-jitter......Page 33
1.2.3 Packet Loss......Page 34
1.2.4 Bandwidth and Throughput......Page 37
1.2.5 Per Flow Sequence Preservation......Page 43
1.2.6 Availability......Page 45
1.2.7 Quality of Experience......Page 47
1.3 Application SLA Requirements......Page 49
1.3.1 Voice over IP......Page 51
1.3.2 Video......Page 63
1.3.3 Data Applications......Page 83
1.4 Marketed SLAs versus Engineered SLAs......Page 101
1.4.2 Inter-provider SLAs......Page 102
1.5 Intserv and Diffserv SLAs......Page 103
References......Page 104
2.1 What is Quality of Service?......Page 112
2.1.1 Quality of Service vs Class of Service or Type of Service?......Page 113
2.1.2 Best-effort Service......Page 114
2.1.3 The Timeframes that Matter for QOS......Page 115
2.1.5 The QOS Toolset......Page 116
2.2.1 Classification......Page 119
2.2.2 Marking......Page 124
2.2.3 Policing and Metering......Page 125
2.2.4 Queuing, Scheduling, Shaping, and Dropping......Page 137
2.2.5 Link Fragmentation and Interleaving......Page 165
2.3.1 A Short History of IP Quality of Service......Page 166
2.3.2 Type of Service/IP Precedence......Page 167
2.3.4 Differentiated Services Architecture......Page 172
2.3.5 IPv6 QOS Architectures......Page 195
2.3.6 MPLS QOS Architectures......Page 196
2.3.7 IP Multicast and QOS......Page 206
2.4 Typical Router QOS Implementations in Practice......Page 208
2.5 Layer 2 QOS......Page 214
2.5.1 ATM......Page 215
2.5.2 Frame-relay......Page 219
2.5.3 Ethernet......Page 221
2.6 Complementary Technologies......Page 222
2.7 Where QOS cannot make a difference......Page 223
References......Page 224
2.A.1 Notation......Page 229
2.A.2 Conversion......Page 230
3.1 Introduction......Page 234
3.2.1 Why is the Edge Key for Tight SLA Services?......Page 236
3.2.2 Edge Diffserv Case Study......Page 237
3.3.1 Is Diffserv Needed in the Backbone?......Page 274
3.3.2 Core Case Study......Page 278
3.4 Tuning (W)RED......Page 293
3.4.1 Tuning the Exponential Weighting Constant......Page 294
3.4.2 Tuning Minth and Maxth......Page 295
3.4.4 In- and Out-of-contract......Page 296
References......Page 297
4.1 Introduction......Page 300
4.1.1 When is Admission Control Needed?......Page 302
4.1.2 A Taxonomy for Admission Control......Page 307
4.1.3 What Information is Needed for Admission Control?......Page 310
4.1.4 Parameterized or Measurements-based Algorithms......Page 311
4.2 Topology-unaware Off-path CAC......Page 315
4.3 Topology-aware Off-path CAC: "Bandwidth Manager"......Page 317
4.3.1 Example Bandwidth Manager Method of Operation: Next Generation Network Voice CAC......Page 319
4.4 The Integrated Services Architecture/RSVP......Page 328
4.4.1 RSVP......Page 329
4.4.2 RSVP Example Reservation Setup......Page 332
4.4.3 Application Signaling Interaction......Page 339
4.4.4 Intserv over Diffserv......Page 341
4.4.5 RSVP Aggregation......Page 345
4.4.6 RSVP Traffic Engineering......Page 350
4.5 NSIS......Page 351
4.6 End-system Measurement-based Admission Control......Page 353
4.7 Summary......Page 354
References......Page 355
5.1 Introduction......Page 360
5.2 Passive Network Monitoring......Page 361
5.2.2 Per-link Statistics......Page 362
5.2.3 System Monitoring......Page 371
5.2.4 Core Traffic Matrix......Page 372
5.3 Active Network Monitoring......Page 373
5.3.1 Test Stream Parameters......Page 374
5.3.2 Active Measurement Metrics......Page 383
5.3.3 Deployment Considerations......Page 389
References......Page 396
6.1 Core Network Capacity Planning......Page 400
6.1.1 Capacity Planning Methodology......Page 401
6.1.2 Collecting the Traffic Demand Matrices......Page 402
6.1.3 Determine Appropriate Over-provisioning Factors......Page 407
6.1.4 Simulation and Analysis......Page 413
6.2 IP Traffic Engineering......Page 414
6.2.1 The Problem......Page 415
6.2.2 IGP Metric-based Traffic Engineering......Page 419
6.2.3 MPLS Traffic Engineering......Page 422
References......Page 439
B......Page 444
C......Page 445
D......Page 446
E......Page 447
I......Page 448
L......Page 449
N......Page 450
P......Page 451
Q......Page 452
R......Page 453
S......Page 454
T......Page 455
W......Page 456