Delay differential equations and applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): O. Arino, M.L. Hbid, E. Ait Dads
Series: NATO ... II: Mathematics, Physics and Chemistry
Edition: 1
Publisher: Springer
Year: 2006

Language: English
Pages: 595
Tags: Математика;Дифференциальные уравнения;

Contents......Page 6
List of Figures......Page 13
Preface......Page 16
Contributing Authors......Page 19
Introduction......Page 21
1 History Of Delay Equations......Page 25
1 Stability of equilibria and Lyapunov functions......Page 27
2 Invariant Sets, Omega-limits and Lyapunov functionals......Page 31
3 Delays may cause instability......Page 34
4 Linear autonomous equations and perturbations......Page 36
5 Neutral Functional Differential Equations......Page 40
6 Periodically forced systems and discrete dynamical systems......Page 44
7 Dissipation, maximal compact invariant sets and attractors......Page 45
8 Stationary points of dissipative flows......Page 48
Part I General Results and Linear Theory of Delay Equations in Finite Dimensional Spaces......Page 53
1 Introduction......Page 54
2 A general initial value problem......Page 56
1 Basic Theory......Page 64
2 Eigenspaces......Page 94
3 Small Solutions and Completeness......Page 127
4 Degenerate delay equations......Page 133
Appendix: A......Page 150
Appendix: B......Page 152
Appendix: C......Page 154
Appendix: D......Page 155
References......Page 160
Part II Hopf Bifurcation, Centre manifolds and Normal Forms for Delay Differential Equations......Page 163
1 Introduction......Page 164
2 Variation Of Constant Formula Using Sun-Star Machinery......Page 166
3 Variation Of Constant Formula Using Integrated Semigroups Theory......Page 170
1 Introduction......Page 181
2 The Lyapunov Direct Method And Hopf Bifurcation: The Case Of Ode......Page 186
3 The Center Manifold Reduction Of DDE......Page 188
4 Cases Where The Approximation Of Center Manifold Is Needed......Page 202
1 Introduction......Page 212
2 Notations and background......Page 214
3 Computational scheme of a local center manifold......Page 218
4 Computational scheme of Normal Forms......Page 232
1 Introduction......Page 246
2 Normal Forms for FDEs in Finite Dimensional Spaces......Page 250
3 Normal forms and Bifurcation Problems......Page 262
4 Normal Forms for FDEs in Hilbert Spaces......Page 272
5 Normal Forms for FDEs in General Banach Spaces......Page 281
References......Page 294
Part III Functional Differential Equations in Infinite Dimensional Spaces......Page 302
1 Introduction......Page 303
2 The Cauchy Problem For An Abstract Linear Delay Differential Equation......Page 321
3 Formal Duality......Page 329
4 Linear Theory Of Abstract Functional Differential Equations Of Retarded Type......Page 338
5 A Variation Of Constants Formula For An Abstract Functional Differential Equation Of Retarded Type......Page 353
1 Introduction......Page 365
2 Basic results......Page 368
3 Existence, uniqueness and regularity of solutions......Page 372
4 The semigroup and the integrated semigroup in the autonomous case......Page 390
5 Principle of linearized stability......Page 399
6 Spectral Decomposition......Page 401
7 Existence of bounded solutions......Page 403
8 Existence of periodic or almost periodic solutions......Page 409
9 Applications......Page 411
References......Page 416
Part IV More on Delay Differential Equations and Applications......Page 425
1 Basic theory and some results for examples......Page 426
2 Monotone feedback: The structure of invariant sets and attractors......Page 451
3 Chaotic motion......Page 466
4 Stable periodic orbits......Page 471
5 State-dependent delays......Page 483
1 Introduction......Page 492
2 Hutchinson's Equation......Page 493
3 Recruitment Models......Page 499
4 The Allee Effect......Page 503
5 Food-Limited Models......Page 504
6 Regulation of Haematopoiesis......Page 506
7 A Vector Disease Model......Page 508
8 Multiple Delays......Page 510
9 Volterra Integrodifferential Equations......Page 511
10 Periodicity......Page 520
11 State-Dependent Delays......Page 526
12 Diffusive Models with Delay......Page 529
1 Introduction......Page 533
2 Preliminaries......Page 535
3 Homogeneous Retarded Differential Equations......Page 539
1 Introduction......Page 553
2 Origin of time delays in epidemic models......Page 554
3 A model that includes a vaccinated state......Page 558
4 Reduction of the system by using specific P(t) functions......Page 562
5 Numerical considerations......Page 564
6 A few words of warning......Page 566
Appendix......Page 569
References......Page 573
E......Page 593
S......Page 594
V......Page 595