This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.
Simply click on the Download Book button.
Yes, Book downloads on Ebookily are 100% Free.
Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"
Author(s): Emmanuele DiBenedetto
Series: Universitext
Publisher: Springer
Year: 1993
Language: English
Pages: 403
Tags: Математика;Дифференциальные уравнения;Дифференциальные уравнения в частных производных;
§5. Sup-estimates for \frac{2N}{N+2}
§6. Local subsolutions......Page 214
§7. Time expansion of positivity......Page 218
§8. Space-time configurations......Page 219
§9. Proof of the Harnack inequality......Page 221
§10. Proof of Theorem 1.2......Page 226
§11. Bibliographical notes......Page 229
§1. Introduction......Page 230
§2. Boundedness of weak solutions......Page 233
§3. Weak differentiability of |Du|^{\frac{p-2}{2}} Du and energy estimates for |Du|......Page 238
§4. Boundedness of |Du|. Qualitative estimates......Page 246
§5. Quantitative sup-bounds of |Du|......Page 253
§6. General structures......Page 258
§7. Bibliographical notes......Page 259
§1. The main theorem......Page 260
§2. Estimating the oscillation of Du......Page 263
§3. Holder continuity of Du (the case p > 2)......Page 266
§4. Holder continuity of Du (the case 1
§5. Some algebraic Lemmas......Page 273
§6. Linear parabolic systems with constant coefficients......Page 278
§7. The perturbation lemma......Page 283
§8. Proof of Proposition 1.1-(i)......Page 290
§9. Proof of Proposition 1.1-(ii)......Page 293
§10. Proof of Proposition 1.1-(iii)......Page 297
§11. Proof of Proposition 1.1 concluded......Page 299
§12. Proof of Proposition 1.2-(i)......Page 301
§13. Proof of Proposition 1.2 concluded......Page 303
§15. Bibliographical notes......Page 306
§1. Introduction......Page 307
§2. Flattening the boundary......Page 309
§3. An iteration lemma......Page 312
§4. Comparing w and v (thecase p > 2)......Page 314
§5. Estimating the local average of |Dw| (the case p > 2)......Page 319
§6. Estimating the local averages of w (the case p > 2)......Page 320
§7. Comparing w and v (the case max {1; \frac{2N}{N+2}}
§8. Estimating the local average of |Dw|......Page 328
§9. Bibliographical notes......Page 330
§1. Introduction......Page 331
§2. Behaviour of non-negative solutions as |x| -> \infty and as t earrow 0......Page 332
§3. Proof of (2.4)......Page 334
§4. Initial traces......Page 337
§5. Estimating |Du|^{p-1} in Σ_T......Page 338
§6. Uniqueness for data in L_{loc}^1(\mathbb{R}^N)......Page 341
§7. Solving the Cauchy problem......Page 345
§8. Bibliographical notes......Page 348
§1. Introduction......Page 349
§2. Weak solutions......Page 352
§3. Estimating |Du|......Page 355
§4. The weak Harnack inequality and initial traces......Page 359
§5. The uniqueness theorem......Page 361
§6. An auxiliary proposition......Page 365
§8. Solving the Cauchy problem......Page 377
§9. Compactness in the space variables......Page 378
§10. Compactness in the t variable......Page 381
§11. More on the time—compactness......Page 385
§12. The limiting process......Page 386
§13. Bounded solutions. A counterexample......Page 391
§14. Bibliographical notes......Page 394
Bibliography......Page 396