Deep Learning Through Sparse and Low-Rank Modeling

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Deep Learning through Sparse Representation and Low-Rank Modelingbridges classical sparse and low rank models--those that emphasize problem-specific Interpretability--with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining.

This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.




Combines classical sparse and low-rank models and algorithms with the latest advances in deep learning networks
Shows how the structure and algorithms of sparse and low-rank methods improves the performance and interpretability of Deep Learning models
Provides tactics on how to build and apply customized deep learning models for various applications

Author(s): Zhangyang Wang; Yun Raymond; Thomas S Huang
Series: 4
Edition: Paperback
Publisher: Academic Press
Year: 2019

Language: English
Pages: 296