Data Mining With Decision Trees: Theory and Applications (2nd Edition)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining; it is the science of exploring large and complex bodies of data in order to discover useful patterns. Decision tree learning continues to evolve over time. Existing methods are constantly being improved and new methods introduced.

This 2nd Edition is dedicated entirely to the field of decision trees in data mining; to cover all aspects of this important technique, as well as improved or new methods and techniques developed after the publication of our first edition. In this new edition, all chapters have been revised and new topics brought in. New topics include Cost-Sensitive Active Learning, Learning with Uncertain and Imbalanced Data, Using Decision Trees beyond Classification Tasks, Privacy Preserving Decision Tree Learning, Lessons Learned from Comparative Studies, and Learning Decision Trees for Big Data. A walk-through guide to existing open-source data mining software is also included in this edition.

This book invites readers to explore the many benefits in data mining that decision trees offer:

  • Self-explanatory and easy to follow when compacted
  • Able to handle a variety of input data: nominal, numeric and textual
  • Scales well to big data
  • Able to process datasets that may have errors or missing values
  • High predictive performance for a relatively small computational effort
  • Available in many open source data mining packages over a variety of platforms
  • Useful for various tasks, such as classification, regression, clustering and feature selection
    • Readership: Researchers, graduate and undergraduate students in information systems, engineering, computer science, statistics and management.

Author(s): Lior Rokach, Oded Maimon
Series: Series in Machine Perception and Artifical Intelligence
Edition: 2
Publisher: World Scientific Publishing Company
Year: 2015

Language: English
Pages: 380
Tags: Информатика и вычислительная техника;Искусственный интеллект;Интеллектуальный анализ данных;