Data Mining: Foundations and Practice

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book contains valuable studies in data mining from both foundational and practical perspectives. The foundational studies of data mining may help to lay a solid foundation for data mining as a scientific discipline, while the practical studies of data mining may lead to new data mining paradigms and algorithms. The foundational studies contained in this book focus on a broad range of subjects, including conceptual framework of data mining, data preprocessing and data mining as generalization, probability theory perspective on fuzzy systems, rough set methodology on missing values, inexact multiple-grained causal complexes, complexity of the privacy problem, logical framework for template creation and information extraction, classes of association rules, pseudo statistical independence in a contingency table, and role of sample size and determinants in granularity of contingency matrix. The practical studies contained in this book cover different fields of data mining, including rule mining, classification, clustering, text mining, Web mining, data stream mining, time series analysis, privacy preservation mining, fuzzy data mining, ensemble approaches, and kernel based approaches. We believe that the works presented in this book will encourage the study of data mining as a scientific field and spark collaboration among researchers and practitioners.

Author(s): Tsau Young Lin, Ying Xie, Anita Wasilewska, Churn-Jung Liau
Series: Studies in Computational Intelligence 118
Edition: 1
Publisher: Springer
Year: 2008

Language: English
Pages: 578